plotmvoutlier function

Multivariate outlier plot

Multivariate outlier plot

This function plots multivariate outliers. One possibility is to distinguish between outlier and no outlier. The alternative is to distinguish between the different percentils (e.g. <25%, 25%<x<50%,...).

plotmvoutlier(coord, data, quan = 1/2, alpha = 0.025, symb = FALSE, bw = FALSE, plotmap = TRUE, map = "kola.background", which.map = c(1, 2, 3, 4), map.col = c(5, 1, 3, 4), map.lwd = c(2, 1, 2, 1), pch2 = c(3, 21), cex2 = c(0.7, 0.2), col2 = c(1, 1), lcex.fac = 1, ...)

Arguments

  • coord: the coordinates for the points
  • data: the value for the different coordinates
  • quan: Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd
  • alpha: Maximum thresholding proportion
  • symb: if FALSE, only two different symbols (outlier and no outlier) will be used
  • bw: if TRUE, symbols are in gray-scale (only if symb=TRUE)
  • plotmap: if TRUE, the map is plotted
  • map: the name of the background map
  • which.map, map.col, map.lwd: parameters for the background plot, see plotbg
  • pch2, cex2, col2: graphical parameters for the points
  • lcex.fac: factor for multiplication of symbol size (only if symb=TRUE)
  • ...: further parameters for the plot

Details

The function computes a robust estimation of the covariance and then the Mahalanobis distances are calculated. With this distances the data set is divided into outliers and non outliers. If symb=FALSE only two different symbols are used otherwise different grey scales are used to distinguish the different types of outliers.

Returns

  • o: returns the outliers

  • md: the square root of the Mahalanobis distance

  • euclidean: the Euclidean distance of the scaled data

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Author(s)

Peter Filzmoser <P.Filzmoser@tuwien.ac.at > http://cstat.tuwien.ac.at/filz/

See Also

plotbg, covMcd, arw

Examples

data(moss) X=moss[,"XCOO"] Y=moss[,"YCOO"] el=c("Ag","As","Bi","Cd","Co","Cu","Ni") x=log10(moss[,el]) data(kola.background) plotmvoutlier(cbind(X,Y),x,symb=FALSE,map.col=c("grey","grey","grey","grey"), map.lwd=c(1,1,1,1), xlab="",ylab="",frame.plot=FALSE,xaxt="n",yaxt="n")