plotuniout function

Multivariate outlier plot for each dimension

Multivariate outlier plot for each dimension

A multivariate outlier plot for each dimension is produced.

plotuniout(x, symb = FALSE, quan = 1/2, alpha = 0.025, bw = FALSE, pch2 = c(3, 1), cex2 = c(0.7, 0.4), col2 = c(1, 1), lcex.fac = 1, ...)

Arguments

  • x: dataset
  • symb: if FALSE, only two different symbols (outlier and no outlier) will be used
  • quan: Number of subsets used for the robust estimation of the covariance matrix. Allowed are values between 0.5 and 1., see covMcd
  • alpha: Maximum thresholding proportion, see arw
  • bw: if TRUE, symbols are in gray-scale (only if symb=TRUE)
  • pch2, cex2, col2: graphical parameters for the points
  • lcex.fac: factor for multiplication of symbol size (only if symb=TRUE)
  • ...: further graphical parameters for the plot

Returns

  • o: returns the outliers

  • md: the square root of the Mahalanobis distance

  • euclidean: the Euclidean distance of the scaled data

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Author(s)

Peter Filzmoser <P.Filzmoser@tuwien.ac.at > http://cstat.tuwien.ac.at/filz/

See Also

arw, covMcd

Examples

data(moss) el=c("Ag","As","Bi","Cd","Co","Cu","Ni") dat=log10(moss[,el]) ans<-plotuniout(dat,symb=FALSE,cex2=c(0.9,0.1),pch2=c(3,21))