scatter3dPETER function

3D plot of a Regression Model

3D plot of a Regression Model

This function makes a 3D plot of the data and the regression function. The user has the choice between different methods to calculate the coefficients for the regression model.

scatter3dPETER(x, y, z, xlab = deparse(substitute(x)), ylab = deparse(substitute(y)), zlab = deparse(substitute(z)), revolutions = 0, bg.col = c("white", "black"), axis.col = if (bg.col == "white") "black" else "white", surface.col = c("blue", "green", "orange", "magenta", "cyan", "red", "yellow", "gray"), neg.res.col = "red", pos.res.col = "green", point.col = "yellow", text.col = axis.col, grid.col = if (bg.col == "white") "black" else "gray", fogtype = c("exp2", "linear", "exp", "none"), residuals = (length(fit) == 1), surface = TRUE, grid = TRUE, grid.lines = 26, df.smooth = NULL, df.additive = NULL, sphere.size = 1, threshold = 0.01, speed = 1, fov = 60, fit = "linear", groups = NULL, parallel = TRUE, model.summary = FALSE)

Arguments

  • x, y, z: the coordinates for the points
  • xlab, ylab, zlab: the labels for the axis
  • revolutions: if the plot should be viewed from different angles
  • bg.col, axis.col, surface.col, point.col, text.col, grid.col: define the colour for the background, axis,...
  • pos.res.col, neg.res.col: colour for positive and negativ residuals
  • fogtype: describes the fogtype, see rgl.bg
  • residuals: if the residuals should be plotted
  • surface: if the regression function should be plotted or just the points
  • grid: if TRUE, the grid is plotted
  • grid.lines: number of lines in the grid
  • df.smooth: if fit=smooth, the number of degrees of freedom
  • df.additive: if fit=additive, the number of degrees of freedom
  • sphere.size: a value for calibrating the size of the sphere
  • threshold: the minimum size of the sphere, if the size is smaller than the threshold a point is plotted
  • speed: if revolutions>0, how fast you make a 360 degree turn
  • fov: field-of-view angle, see rgl.viewpoint
  • fit: which method should be used for the model; "linear", "quadratic", "smooth" or "additive"
  • groups: define groups for the points
  • parallel: if groups is not NULL, a parallel shift in the model is made
  • model.summary: if the summary should be returned

Returns

No return value, creates a plot.

Details

The user can choose between a linear, quadratic, smoothed or additve model to calculate the coefficients.

References

C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter: Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.

Author(s)

Peter Filzmoser <P.Filzmoser@tuwien.ac.at > http://cstat.tuwien.ac.at/filz/

Examples

#required library #require(IPSUR) data(chorizon) lit=1 # This example needs additional libraries: #scatter3dPETER(x=log10(chorizon[chorizon$LITO==lit,"Cr"]), # z=log10(chorizon[chorizon$LITO==lit,"Cr_INAA"]), # y=log10(chorizon[chorizon$LITO==lit,"Co"]), # xlab="",ylab="",zlab="", # neg.res.col=gray(0.6), pos.res.col=gray(0.1), point.col=1, fov=30, # surface.col="black",grid.col="gray",sphere.size=0.8)