Prediction in spatio-temporal model with censored/missing responses
This function performs spatio-temporal prediction in a set of new S
spatial locations for fixed time points.
PredStempCens(Est.StempCens, locPre, timePre, xPre)
Est.StempCens
: an object of class Est.StempCens
given as output by the EstStempCens
function.locPre
: a matrix of coordinates for which prediction is performed.timePre
: the time point vector for which prediction is performed.xPre
: a matrix of covariates for which prediction is performed.The function returns an object of class Pred.StempCens
which is a list given by:
predValues: predicted values.
VarPred: predicted covariance matrix.
## Not run: # Initial parameter values beta <- c(-1,1.50) phi <- 5; rho <- 0.60 tau2 <- 0.80; sigma2 <- 2 # Simulating data n1 <- 17 # Number of spatial locations n2 <- 5 # Number of temporal index set.seed(12345) x.co <- round(runif(n1,0,10),9) # X coordinate y.co <- round(runif(n1,0,10),9) # Y coordinate coord <- cbind(x.co,y.co) # Cartesian coordinates without repetitions coord2 <- cbind(rep(x.co,each=n2),rep(y.co,each=n2)) # Cartesian coordinates with repetitions time <- as.matrix(seq(1,n2)) # Time index without repetitions time2 <- as.matrix(rep(time,n1)) # Time index with repetitions x1 <- rexp(n1*n2,2) x2 <- rnorm(n1*n2,2,1) x <- cbind(x1,x2) media <- x%*%beta # Covariance matrix Ms <- as.matrix(dist(coord)) # Spatial distances Mt <- as.matrix(dist(time)) # Temporal distances Cov <- CovarianceM(phi,rho,tau2,sigma2,Ms,Mt,0.50,"pow.exp") # Data require(mvtnorm) y <- as.vector(rmvnorm(1,mean=as.vector(media),sigma=Cov)) data <- data.frame(coord2,time2,y,x) names(data) <- c("x.coord","y.coord","time","yObs","x1","x2") # Splitting the dataset local.est <- coord[-c(4,13),] data.est <- data[data$x.coord%in%local.est[,1]&data$y.coord%in%local.est[,2],] data.valid <- data[data$x.coord%in%coord[c(4,13),1]&data$y.coord%in%coord[c(4,13),2],] # Censored perc <- 0.10 y <- data.est$yObs aa <- sort(y); bb <- aa[1:(perc*nrow(data.est))] cutof <- bb[perc*nrow(data.est)] cc <- matrix(1,nrow(data.est),1)*(y<=cutof) y[cc==1] <- cutof data.est <- cbind(data.est[,-c(4,5,6)],y,cc,data.est[,c(5,6)]) names(data.est) <- c("x.coord","y.coord","time","yObs","censored","x1","x2") # Estimation y <- data.est$yObs x <- cbind(data.est$x1,data.est$x2) cc <- data.est$censored time2 <- matrix(data.est$time) coord2 <- data.est[,1:2] LI <- y; LI[cc==1] <- -Inf # Left-censored LS <- y est_teste <- EstStempCens(y, x, cc, time2, coord2, LI, LS, init.phi=3.5, init.rho=0.5, init.tau2=1, kappa=0.5, type.S="pow.exp", IMatrix=FALSE, M=20, perc=0.25, MaxIter=300, pc=0.20) class(est_teste) # Prediction locPre <- data.valid[,1:2] timePre <- matrix(data.valid$time) xPre <- cbind(data.valid$x1,data.valid$x2) pre_teste <- PredStempCens(est_teste, locPre, timePre, xPre) library(ggplot2) Model <- rep(c("y Observed","y Predicted"),each=10) station <- rep(rep(c("Station 1", "Station 2"),each=5),times=2) xcoord1 <- rep(seq(1:5),4) ycoord1 <- c(data.valid$yObs,pre_teste$predValues) data2 <- data.frame(Model,station,xcoord1,ycoord1) ggplot(data=data2,aes(x=xcoord1,y=ycoord1)) + geom_line(aes(color=Model)) + facet_wrap(station~.,nrow=2) + labs(x="",y="") + theme(legend.position="bottom") ## End(Not run)
EstStempCens
Katherine L. Valeriano, Victor H. Lachos and Larissa A. Matos
Useful links