Performs a test of the null hypothesis that a subset of the regression parameters for the target outcome are zero in the bivariate normal regression model.
TestBNR(t, s, X, Z =NULL, is_zero, test ="Wald",...)
Arguments
t: Target outcome vector.
s: Surrogate outcome vector.
X: Target model matrix.
Z: Surrogate model matrix.
is_zero: Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.
test: Either Score or Wald. Only Wald is available for LS.
...: Additional arguments accepted if fitting via EM. See FitBNEM.
Returns
A numeric vector containing the test statistic, the degrees of freedom, and a p-value.
Examples
# Generate data.set.seed(100)n <-1e3X <- cbind(1, rnorm(n))Z <- cbind(1, rnorm(n))data <- rBNR(X = X, Z = Z, b = c(1,0), a = c(-1,0), t_miss =0.1, s_miss =0.1)# Test 1st coefficient.wald_test1 <- TestBNR( t = data[,1], s = data[,2], X = X, Z = Z, is_zero = c(TRUE,FALSE), test ="Wald")score_test1 <- TestBNR( t = data[,1], s = data[,2], X = X, Z = Z, is_zero = c(TRUE,FALSE), test ="Score")# Test 2nd coefficient.wald_test2 <- TestBNR( t = data[,1], s = data[,2], X = X, Z = Z, is_zero = c(FALSE,TRUE), test ="Wald")score_test2 <- TestBNR( t = data[,1], s = data[,2], X = X, Z = Z, is_zero = c(FALSE,TRUE), test ="Score")