TestBNR function

Test Bivariate Normal Regression Model.

Test Bivariate Normal Regression Model.

Performs a test of the null hypothesis that a subset of the regression parameters for the target outcome are zero in the bivariate normal regression model.

TestBNR(t, s, X, Z = NULL, is_zero, test = "Wald", ...)

Arguments

  • t: Target outcome vector.
  • s: Surrogate outcome vector.
  • X: Target model matrix.
  • Z: Surrogate model matrix.
  • is_zero: Logical vector, with as many entires as columns in the target model matrix, indicating which columns have coefficient zero under the null.
  • test: Either Score or Wald. Only Wald is available for LS.
  • ...: Additional arguments accepted if fitting via EM. See FitBNEM.

Returns

A numeric vector containing the test statistic, the degrees of freedom, and a p-value.

Examples

# Generate data. set.seed(100) n <- 1e3 X <- cbind(1, rnorm(n)) Z <- cbind(1, rnorm(n)) data <- rBNR(X = X, Z = Z, b = c(1, 0), a = c(-1, 0), t_miss = 0.1, s_miss = 0.1) # Test 1st coefficient. wald_test1 <- TestBNR( t = data[, 1], s = data[, 2], X = X, Z = Z, is_zero = c(TRUE, FALSE), test = "Wald" ) score_test1 <- TestBNR( t = data[, 1], s = data[, 2], X = X, Z = Z, is_zero = c(TRUE, FALSE), test = "Score" ) # Test 2nd coefficient. wald_test2 <- TestBNR( t = data[, 1], s = data[, 2], X = X, Z = Z, is_zero = c(FALSE, TRUE), test = "Wald" ) score_test2 <- TestBNR( t = data[, 1], s = data[, 2], X = X, Z = Z, is_zero = c(FALSE, TRUE), test = "Score" )
  • Maintainer: Zachary McCaw
  • License: GPL-3
  • Last published: 2023-10-01

Useful links