Pipeline for Topological Data Analysis
Calculate Persistent Homology of a Point Cloud
Identify Significant Features in Persistent Homology
Statistical Inference for Topological Data Analysis
Calculate Distance between Homology Matrices
Plot Persistent Homology as Topological Barcode
Plot Persistent Homology as Persistence Diagram
Statistical Inference for Persistent Homology in Topological Data Anal...
A comprehensive toolset for any useR conducting topological data analysis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools this package currently provides can be conveniently split into three main sections: (1) calculating persistent homology; (2) conducting statistical inference on persistent homology calculations; (3) visualizing persistent homology and statistical inference. The published form of TDAstats can be found in Wadhwa et al. (2018) <doi:10.21105/joss.00860>. For a general background on computing persistent homology for topological data analysis, see Otter et al. (2017) <doi:10.1140/epjds/s13688-017-0109-5>. To learn more about how the permutation test is used for nonparametric statistical inference in topological data analysis, read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>. To learn more about how TDAstats calculates persistent homology, you can visit the GitHub repository for Ripser, the software that works behind the scenes at <https://github.com/Ripser/ripser>. This package has been published as Wadhwa et al. (2018) <doi:10.21105/joss.00860>.