detectAO function

Additive Outlier Detection

Additive Outlier Detection

This function serves to detect whether there are any additive outliers (AO). It implements the test statistic lambda2,tlambda_{2,t} proposed by Chang, Chen and Tiao (1988).

detectAO(object, alpha = 0.05, robust = TRUE)

Arguments

  • object: a fitted ARIMA model
  • alpha: family significance level (5% is the default) Bonferroni rule is used to control the family error rate.
  • robust: if true, the noise standard deviation is estimated by mean absolute residuals times sqrt(pi/2). Otherwise, it is the estimated by sqrt(sigma2) from the arima fit.

Returns

A list containing the following components: - ind: the time indices of potential AO

  • lambda2: the corresponding test statistics

References

Chang, I.H., Tiao, G.C. and C. Chen (1988). Estimation of Time Series Parameters in the Presence of Outliers. Technometrics, 30, 193-204.

Author(s)

Kung-Sik Chan

See Also

detectIO

Examples

set.seed(12345) y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100) y[10] y[10]=10 y=ts(y,freq=1,start=1) plot(y,type='o') acf(y) pacf(y) eacf(y) m1=arima(y,order=c(1,0,0)) m1 detectAO(m1) detectAO(m1, robust=FALSE) detectIO(m1)