benchmark function

Benchmarking a time series prediction process

Benchmarking a time series prediction process

benchmark is a generic function for benchmarking results based on particular metrics. The function invokes particular methods which depend on the class of the first argument.

benchmark(obj, ...) ## S3 method for class 'tspred' benchmark(obj, bmrk_objs, rank.by = c("MSE"), ...)

Arguments

  • obj: An object of class tspred defining a particular time series prediction process.
  • ...: Ignored
  • bmrk_objs: A list of objects of class tspred to be compared against obj.
  • rank.by: A vector of the given names of the metrics that should base the ranking.

Returns

A list containing: - rank: A data.frame with the ranking of metrics computed for the benchmarked tspred objects.

  • ranked_tspred_objs: A list of the benchmarked tspred objects ordered according to the produced rank.

Details

The function benchmark.tspred benchmarks a time series prediction process defined by a tspred object based on a particular metric. The metrics resulting from its execution are compared against the ones produced by other time series prediction processes (defined in a list of tspred objects).

Examples

#Obtaining objects of the processing class proc1 <- subsetting(test_len=20) proc2 <- BoxCoxT(lambda=NULL) proc3 <- WT(level=1, filter="bl14") #Obtaining objects of the modeling class modl1 <- ARIMA() #Obtaining objects of the evaluating class eval1 <- MSE_eval() eval2 <- MAPE_eval() #Defining a time series prediction process tspred_1 <- tspred(subsetting=proc1, processing=list(BCT=proc2, WT=proc3), modeling=modl1, evaluating=list(MSE=eval1, MAPE=eval2) ) summary(tspred_1) #Obtaining objects of the processing class proc4 <- SW(window_len = 6) proc5 <- MinMax() #Obtaining objects of the modeling class modl2 <- NNET(size=5,sw=proc4,proc=list(MM=proc5)) #Defining a time series prediction process tspred_2 <- tspred(subsetting=proc1, processing=list(BCT=proc2, WT=proc3), modeling=modl2, evaluating=list(MSE=eval1, MAPE=eval2) ) summary(tspred_2) data("CATS") data <- CATS[3] tspred_1_run <- workflow(tspred_1,data=data,prep_test=TRUE,onestep=TRUE) tspred_2_run <- workflow(tspred_2,data=data,prep_test=TRUE,onestep=TRUE) b <- benchmark(tspred_1_run,list(tspred_2_run),rank.by=c("MSE"))

See Also

[tspred()] for defining a particular time series prediction process.

Author(s)

Rebecca Pontes Salles

  • Maintainer: Rebecca Pontes Salles
  • License: GPL (>= 2)
  • Last published: 2021-01-21