minmax function

Minmax Data Normalization

Minmax Data Normalization

The minmax() function normalizes data of the provided time series to bring values into the range [0,1]. minmax.rev() reverses the normalization.

minmax(data, max = NULL, min = NULL, byRow = FALSE) minmax.rev(data, max, min)

Arguments

  • data: A numeric vector, a univariate time series containing the values to be normalized, or a matrix with sliding windows as returned by sw.
  • max: Integer indicating the maximal value in data, or a vector with the maximal values of each row (sliding window) in data. If NULL it is automatically computed.
  • min: Integer indicating the minimum value in data, or a vector with the minimum values of each row (sliding window) in data. If NULL it is automatically computed.
  • byRow: If TRUE, the normalization is performed by rows (sliding windows). Default set to FALSE.

Returns

data normalized between 0 and 1. If byRow is TRUE, the function returns data normalized by rows (sliding windows). max and min are returned as attributes.

Details

Ranging is done by using:

X=(xxmin)(xmaxxmin) X' = \frac{(x - x_{min})}{(x_{max} - x_{min})}

.

Examples

data(CATS) d <- minmax(CATS[,1]) x <- minmax.rev(d, max = attributes(d)$max, min = attributes(d)$min) all(round(x,4)==round(CATS[,1],4)) d <- minmax(sw(CATS[,1],5), byRow = TRUE) x <- minmax.rev(d, max = attributes(d)$max, min = attributes(d)$min) all(round(x,4)==round(sw(CATS[,1],5),4))

References

R.J. Hyndman and G. Athanasopoulos, 2013, Forecasting: principles and practice. OTexts.

E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrao, G. L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-stationary time series, Proceedings of the International Joint Conference on Neural Networks.

See Also

Other normalization methods: an()

Author(s)

Rebecca Pontes Salles

  • Maintainer: Rebecca Pontes Salles
  • License: GPL (>= 2)
  • Last published: 2021-01-21