Function subsets sliding windows of data into input and output datasets to be passed to machine-learning methods.
mlm_io(sw)
Arguments
sw: A numeric matrix with sliding windows of time series data as returned by sw.
Returns
A list with input and output datasets.
Details
When sw has k columns (sliding windows of size k), the input dataset contains the first k-1 columns and the output dataset contains the last column of data.
Examples
data(CATS)swin <- sw(CATS[,1],5)d <- mlm_io(swin)
References
E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrao, G. L. Pappa, and M. Mattoso, 2010, Adaptive Normalization: A novel data normalization approach for non-stationary time series, Proceedings of the International Joint Conference on Neural Networks.