quality_metrics function

Prediction/modeling quality metrics

Prediction/modeling quality metrics

Constructors for the evaluating class representing a time series prediction or modeling fitness quality evaluation based on particular metrics.

MSE_eval() NMSE_eval(eval_par = list(train.actual = NULL)) RMSE_eval() MAPE_eval() sMAPE_eval() MAXError_eval() AIC_eval() BIC_eval() AICc_eval() LogLik_eval()

Arguments

  • eval_par: List of named parameters required by NMSE such as train.actual.

Returns

An object of class evaluating.

Error metrics

MSE_eval: Mean Squared Error.

NMSE_eval: Normalised Mean Squared Error.

RMSE_eval: Root Mean Squared Error.

MAPE_eval: Mean Absolute Percentage Error.

sMAPE_eval: Symmetric Mean Absolute Percentage Error.

MAXError_eval: Maximal Error.

Fitness criteria

AIC_eval: Akaike's Information Criterion.

BIC_eval: Schwarz's Bayesian Information Criterion.

AICc_eval: Second-order Akaike's Information Criterion.

LogLik_eval: Log-Likelihood.

See Also

Other constructors: ARIMA(), LT(), evaluating(), modeling(), processing(), tspred()

Author(s)

Rebecca Pontes Salles

  • Maintainer: Rebecca Pontes Salles
  • License: GPL (>= 2)
  • Last published: 2021-01-21