Prediction/modeling quality metrics
Constructors for the evaluating
class representing a time series prediction or modeling fitness quality evaluation based on particular metrics.
MSE_eval() NMSE_eval(eval_par = list(train.actual = NULL)) RMSE_eval() MAPE_eval() sMAPE_eval() MAXError_eval() AIC_eval() BIC_eval() AICc_eval() LogLik_eval()
eval_par
: List of named parameters required by NMSE
such as train.actual
.An object of class evaluating
.
MSE_eval: Mean Squared Error.
NMSE_eval: Normalised Mean Squared Error.
RMSE_eval: Root Mean Squared Error.
MAPE_eval: Mean Absolute Percentage Error.
sMAPE_eval: Symmetric Mean Absolute Percentage Error.
MAXError_eval: Maximal Error.
AIC_eval: Akaike's Information Criterion.
BIC_eval: Schwarz's Bayesian Information Criterion.
AICc_eval: Second-order Akaike's Information Criterion.
LogLik_eval: Log-Likelihood.
Other constructors: ARIMA()
, LT()
, evaluating()
, modeling()
, processing()
, tspred()
Rebecca Pontes Salles
Useful links