EMD: Empirical mode decomposition. prep_func set as emd
and postp_func set as emd.rev.
Data subsetting methods
subsetting: Subsetting data into training and testing sets. prep_func set as train_test_subset
and postp_func set to NULL.
SW: Sliding windows. prep_func set as sw
and postp_func set to NULL.
Methods for handling missing values
NAS: Missing values treatment. prep_func set as parameter na.action
and postp_func set to NULL.
Normalization methods
MinMax: MinMax normalization. prep_func set as minmax
and postp_func set to minmax.rev.
AN: Adaptive normalization. prep_func set as an
and postp_func set to an.rev.
References
R. Salles, K. Belloze, F. Porto, P.H. Gonzalez, and E. Ogasawara. Nonstationary time series transformation methods: An experimental review. Knowledge-Based Systems, 164:274-291, 2019.
See Also
Other constructors: ARIMA(), MSE_eval(), evaluating(), modeling(), processing(), tspred()