Plots fits against numbers of dimensions, with S as labels and fits against number of effective paramaters.
CPdimensionalityplot(A, n, m, p)
Arguments
A: A matrix with columns: number of components, goodness of fit (%)
n: Number of A-mode entities
m: Number of B-mode entities
p: Number of C-mode entities
Note
A is usually the first and fourth columns of the output of DimSelector.
The number of effective parameters in a Candecomp/Parafac analysis is discussed in Weesie and Van Houwelingen (1983).
References
E. Ceulemans & H.A.L. Kiers (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology 59:133--150.
J. Weesie & H. Van Houwelingen (1983). GEPCAM users' manual (first draft). Utrecht, The Netherlands: Institute of Mathematical Statistics, State University of Utrecht.
data(TV)TVdata=TV[[1]]# permutation of the modes so that the A-mode refers to studentsTVdata <- permnew(TVdata,16,15,30)TVdata <- permnew(TVdata,15,30,16)# Fit values of CP with different numbers of components (from 1 to 5)FitCP <- CPrunsFit(TVdata,30,16,15,5)OutCP <- FitCP[,c(1,4)]CPdimensionalityplot(OutCP,30,16,15)