T2 function

Interactive Tucker2 analysis

Interactive Tucker2 analysis

Detects the underlying structure of a three-way array according to the Tucker2 (T2) model.

T2(dati, laba, labb, labc)

Arguments

  • dati: Array of order n x m x p or matrix or data.frame of order (n x mp) containing the matricized array (frontal slices)
  • laba: Optional vector of length n containing the labels of the A-mode entities
  • labb: Optional vector of length m containing the labels of the B-mode entities
  • labc: Optional vector of length p containing the labels of the C-mode entities

Returns

A list including the following components: - A: Component matrix for the A-mode

  • B: Component matrix for the B-mode

  • C: Component matrix for the C-mode

  • core: Matricized core array (frontal slices)

  • fit: Fit value expressed as a percentage

  • fitValues: Fit values expressed as a percentage upon convergence for all the runs of the CP algorithm (see T2func)

  • funcValues: Function values upon convergence for all the runs of the CP algorithm (see T2func)

  • cputime: Computation times for all the runs of the CP algorithm (see T2func)

  • iter: Numbers of iterations upon convergence for all the runs of the CP algorithm (see T2func)

  • fitA: Fit contributions for the A-mode entities (see T3fitpartitioning)

  • fitB: Fit contributions for the B-mode entities (see T3fitpartitioning)

  • fitC: Fit contributions for the C-mode entities (see T3fitpartitioning)

  • fitAB: Fit contributions for the A-and mode B component combinations (see T3fitpartitioning)

  • fitAC: Fit contributions for the A-and mode C component combinations (see T3fitpartitioning)

  • fitBC: Fit contributions for the B-and mode C component combinations (see T3fitpartitioning)

  • laba: Vector of length n containing the labels of the A-mode entities

  • labb: Vector of length m containing the labels of the B-mode entities

  • labc: Vector of length P containing the labels of the C-mode entities

  • Xprep: Matrix of order (n x mp) containing the matricized array (frontal slices) after preprocessing used for the analysis

References

P. Giordani, H.A.L. Kiers, M.A. Del Ferraro (2014). Three-way component analysis using the R package ThreeWay. Journal of Statistical Software 57(7):1--23. http://www.jstatsoft.org/v57/i07/.

P.M. Kroonenberg (2008). Applied Multiway Data Analysis. Wiley, New Jersey.

L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31:279--311.

Author(s)

Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it

Henk A.L. Kiers h.a.l.kiers@rug.nl

Paolo Giordani paolo.giordani@uniroma1.it

See Also

CP,T3,T1

Examples

data(Bus) # labels for Bus data laba <- rownames(Bus) labb <- substr(colnames(Bus)[1:5], 1, 1) labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)], 3, 8) ## Not run: # interactive T2 analysis BusT2 <- T2(Bus, laba, labb, labc) # interactive T2 analysis (when labels are not available) BusT2 <- T2(Bus) ## End(Not run)
  • Maintainer: Paolo Giordani
  • License: GPL (>= 2)
  • Last published: 2015-09-07

Useful links