Produces percentile intervals for all output parameters. The percentile intervals indicate the instability of the sample solutions.
bootstrapT3(X, A, B, C, G, n, m, p, r1, r2, r3, conv, centopt, normopt, optimalmatch, laba, labb, labc)
Arguments
X: Matrix (or data.frame coerced to a matrix) of order (nxmp) containing the matricized array (frontal slices)
A: Component matrix for the A-mode
B: Component matrix for the B-mode
C: Component matrix for the C-mode
G: Matricized core array (frontal slices)
n: Number of A-mode entities of X
m: Number of B-mode entities of X
p: Number of C-mode entities of X
r1: Number of extracted components for the A-mode
r2: Number of extracted components for the B-mode
r3: Number of extracted components for the C-mode
conv: Convergence criterion
centopt: Centering option (see cent3)
normopt: Normalization option (see norm3)
optimalmatch: Binary indicator (0 if the procedure uses matching via orthogonal rotation towards full solutions, 1 if the procedure uses matching via optimal transformation towards full solutions)
laba: Optional vector of length n containing the labels of the A-mode entities
labb: Optional vector of length m containing the labels of the B-mode entities
labc: Optional vector of length p containing the labels of the C-mode entities
Returns
A list including the following components: - Bint: Bootstrap percentile interval of every element of B
Cint: Bootstrap percentile interval of every element of C
Gint: Bootstrap percentile interval of matricized core array (frontal slices) G
fpint: Bootstrap percentile interval for the goodness of fit index expressed as a percentage
Note
The preprocessing must be done in same way as for sample analysis.
The resampling mode must be the A-mode.
The starting points for every bootstrap solution are two: rational (using SVD) and solution from the observed sample.
References
H.A.L. Kiers (2004). Bootstrap confidence intervals for three-way methods. Journal of Chemometrics 18:22--36.
data(Bus)# labels for Bus datalaba <- rownames(Bus)labb <- substr(colnames(Bus)[1:5],1,1)labc <- substr(colnames(Bus)[seq(1,ncol(Bus),5)],3,8)# T3 solutionBusT3 <- T3funcrep(Bus,7,5,37,2,2,2,0,1e-6)## Not run:# Bootstrap analysis on T3 solution using matching via optimal transformationboot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H,7,5,37,2,2,2,1e-6,0,0,1, laba, labb, labc)# Bootstrap analysis on T3 solution using matching via orthogonal rotation # (when labels are not available)boot <- bootstrapT3(Bus, BusT3$A, BusT3$B, BusT3$C, BusT3$H,7,5,37,2,2,2,1e-6,0,0,0)## End(Not run)