PCASup Analysis
Computes PCASup analysis in all the three directions.
pcasup3(X, n, m, p)
X
: Matrix (or data.frame coerced to a matrix) of order (n
x
mp
) containing the matricized array (frontal slices)n
: Number of A
-mode entitiesm
: Number of B
-mode entitiesp
: Number of C
-mode entitiesA list including the following components: - A: Matrix of the eingenvectors of the supermatrix containing the frontal slices of the array (A
-mode)
B: Matrix of the eingenvectors of the supermatrix containing the horizontal slices of the array (B
-mode)
C: Matrix of the eingenvectors of the supermatrix containing the lateral slices of the array (C
-mode)
la: Vector of the eigenvalues of the supermatrix containing the frontal slices of the array (A
-mode)
lb: Vector of the eigenvalues of the supermatrix containing the horizontal slices of the array (B
-mode)
lc: Vector of the eigenvalues of the supermatrix containing the lateral slices of the array (C
-mode)
pcasup3
computes the Tucker3 solution according to Tucker (1966).
Cumulative sum of eigenvalues and fits from PCAsup applied to the A
-, B
- and C
-modes are automatically printed.
H.A.L. Kiers (1991). Hierarchical relations among three-way methods. Psychometrika 56: 449--470.
H.A.L. Kiers (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105--122.
L.R Tucker (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279--311.
Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it
T3
data(Bus) ## Not run: # PCA-sup pcasupBus <- pcasup3(Bus, 7, 5, 37) ## End(Not run)
Useful links