split1, split2: Logical vectors listing leaves in a consistent order, identifying each leaf as a member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.
Returns
MeilaVariationOfInformation() returns the variation of (clustering) information, measured in bits.
MeilaMutualInformation() returns the mutual information, measured in bits.
Details
This is equivalent to the mutual clustering information \insertCite Vinh2010TreeDist. For the total information content, multiply the VoI by the number of leaves.
Examples
# Maximum variation = information content of each split separatelyA <-TRUEB <-FALSEMeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, A, A, A))Entropy(c(3,3)/6)+ Entropy(c(0,6)/6)# Minimum variation = 0MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, B, B, B))# Not always possible for two evenly-sized splits to reach maximum# variation of informationEntropy(c(3,3)/6)*2# = 2MeilaVariationOfInformation(c(A, A, A,B ,B, B), c(A, B, A, B, A, B))# < 2# Phylogenetically uninformative groupings contain spliting informationEntropy(c(1,5)/6)MeilaVariationOfInformation(c(B, A, A, A, A, A), c(A, A, A, A, A, B))