SpectralEigens function

Eigenvalues for spectral clustering

Eigenvalues for spectral clustering

Spectral clustering emphasizes nearest neighbours when forming clusters; it avoids some of the issues that arise from clustering around means / medoids.

SpectralEigens(D, nn = 10L, nEig = 2L) SpectralClustering(D, nn = 10L, nEig = 2L)

Arguments

  • D: Square matrix or dist object containing Euclidean distances between data points.
  • nn: Integer specifying number of nearest neighbours to consider
  • nEig: Integer specifying number of eigenvectors to retain.

Returns

SpectralEigens() returns spectral eigenvalues that can then be clustered using a method of choice.

Examples

library("TreeTools", quietly = TRUE) trees <- as.phylo(0:18, nTip = 8) distances <- ClusteringInfoDistance(trees) eigens <- SpectralEigens(distances) # Perform clustering: clusts <- KMeansPP(dist(eigens), k = 3) plot(eigens, pch = 15, col = clusts$cluster) plot(cmdscale(distances), pch = 15, col = clusts$cluster)

See Also

Other tree space functions: Islands(), MSTSegments(), MapTrees(), MappingQuality(), cluster-statistics, median.multiPhylo()

Author(s)

Adapted by MRS from script by Nura Kawa