mvNcdf function

Truncated multivariate normal cumulative distribution

Truncated multivariate normal cumulative distribution

Computes an estimate and a deterministic upper bound of the probability Pr(l<X<u)(l<X<u), where XX is a zero-mean multivariate normal vector with covariance matrix Σ\Sigma, that is, XX is drawn from N(0,Σ)N(0,\Sigma). Infinite values for vectors uu and ll are accepted. The Monte Carlo method uses sample size nn; the larger nn, the smaller the relative error of the estimator.

mvNcdf(l, u, Sig, n = 1e+05)

Arguments

  • l: lower truncation limit
  • u: upper truncation limit
  • Sig: covariance matrix of N(0,Σ)N(0,\Sigma)
  • n: number of Monte Carlo simulations

Returns

a list with components

  • prob:estimated value of probability Pr(l\<X\<u)(l\<X\<u)
  • relErr:estimated relative error of estimator
  • upbnd:theoretical upper bound on true Pr(l\<X\<u)(l\<X\<u)

Details

Suppose you wish to estimate Pr(l<AX<u)(l<AX<u), where AA is a full rank matrix and XX is drawn from N(μ,Σ)N(\mu,\Sigma), then you simply compute Pr(lAμ<AY<uAμ)(l-A\mu<AY<u-A\mu), where YY is drawn from N(0,AΣA)N(0, A\Sigma A^\top).

Note

For small dimensions, say d<50d<50, better accuracy may be obtained by using the (usually slower) quasi-Monte Carlo version mvNqmc of this algorithm.

Examples

d <- 15; l <- 1:d; u <- rep(Inf, d); Sig <- matrix(rnorm(d^2), d, d)*2; Sig=Sig %*% t(Sig) mvNcdf(l, u, Sig, 1e4) # compute the probability

References

Z. I. Botev (2017), The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1--24.

See Also

mvNqmc, mvrandn

Author(s)

Zdravko I. Botev

  • Maintainer: Leo Belzile
  • License: GPL-3
  • Last published: 2024-07-08

Useful links