Truncated multivariate student cumulative distribution (QMC version)
Truncated multivariate student cumulative distribution (QMC version)
Computes an estimator of the probability Pr(l<X<u), where X is a zero-mean multivariate student vector with scale matrix Sig and degrees of freedom df. Infinite values for vectors u and l are accepted.
mvTqmc(l, u, Sig, df, n =1e+05)
Arguments
l: lower bound for truncation (infinite values allowed)
u: upper bound for truncation
Sig: covariance matrix
df: degrees of freedom
n: sample size
Returns
a list with components
prob:estimated value of probability Pr(l\<X\<u)
relErr:estimated relative error of estimator
upbnd:theoretical upper bound on true Pr(l\<X\<u)
Details
This version uses a Quasi Monte Carlo (QMC) pointset of size ceiling(n/12) and estimates the relative error using 12 independent randomized QMC estimators; QMC is slower than ordinary Monte Carlo (see mvTcdf), but is also likely to be more accurate when d<50.
Note
If you want to estimate Pr(l<Y<u), where Y follows a Student distribution with df degrees of freedom, location vector m and scale matrix Sig, then use mvTqmc(Sig, l - m, u - m, nu, n).
Examples
d <-25; nu <-30;l <- rep(1, d)*5; u <- rep(Inf, d);Sig <-0.5* matrix(1, d, d)+0.5* diag(d);est <- mvTqmc(l, u, Sig, nu, n =1e4)## Not run:d <-5Sig <- solve(0.5*diag(d)+matrix(0.5, d,d))## mvtnorm::pmvt(lower = rep(-1,d), upper = rep(Inf, d), df = 10, sigma = Sig)[1]mvTqmc(rep(-1, d), u = rep(Inf, d), Sig = Sig, df =10, n=1e4)$prob
## End(Not run)
References
Z. I. Botev (2017), The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1--24
Z. I. Botev and P. L'Ecuyer (2015), Efficient probability estimation and simulation of the truncated multivariate Student-t distribution, Proceedings of the 2015 Winter Simulation Conference, pp. 380-391
See Also
mvTcdf, mvrandt, mvNqmc, mvrandn
Author(s)
Matlab code by Zdravko I. Botev, R port by Leo Belzile