Computes with tail-precision the quantile function of the standard normal distribution at 0≤p≤1, and truncated to the interval [l,u]. Infinite values for vectors l and u are accepted.
norminvp(p, l, u)
Arguments
p: quantile at 0≤p≤1
l: lower truncation limit
u: upper truncation limit
Returns
quantile value of the truncated normal distribution.
Details
Suppose we wish to simulate a random variable Z drawn from N(μ,σ2) and conditional on l<Z<u using the inverse transform method. To achieve this, first compute X=norminvp(runif(1),(l-mu)/sig,(u-mu)/sig) and then set Z=mu+sig*X
Note
If you wish to simulate truncated normal variables fast, use trandn. Using norminvp is advisable only when needed, for example, in quasi-Monte Carlo or antithetic sampling, where the inverse transform method is unavoidable.
Examples
d <-150# simulate via inverse transform method norminvp(runif(d),l =1:d, u = rep(Inf, d))
References
Z. I. Botev (2017), The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1--24.