ETS( y, u =NULL, model ="???", s = frequency(y), h =2* s, criterion ="aicc", lambda =1, armaIdent =FALSE, identAll =FALSE, forIntervals =FALSE, bootstrap =FALSE, nSimul =5000, verbose =FALSE, alphaL = c(1e-08,1-1e-08), betaL = alphaL, gammaL = alphaL, phiL = c(0.8,0.98), p0 =-99999)
Arguments
y: a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).
u: a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.
model: the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
Error: ? / A / M
Trend: ? / N / A / Ad / M / Md
Seasonal: ? / N / A / M
s: seasonal period of time series (1 for annual, 4 for quarterly, ...)
h: forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead.
criterion: information criterion for identification ("aic", "bic" or "aicc").
lambda: Box-Cox lambda parameter (NULL: estimate)
armaIdent: check for arma models for error component (TRUE / FALSE).
identAll: run all models to identify the best one (TRUE / FALSE)