Backward selection function for the second screening step
Backward elimination algorithm
backward.selection(data, pts, lambda, mu, alpha_L = 0.25)
data
: A n by p dataset matrixpts
: A numeric vector, which includes all candidate change points obtained from the first steplambda
: Tuning parameter for sparse componentmu
: Tuning parameter for low-rank componentalpha_L
: Constraint space for low rank component, default is 0.25A list object, containing
Useful links