backward.selection function

Backward selection function for the second screening step

Backward selection function for the second screening step

Backward elimination algorithm

backward.selection(data, pts, lambda, mu, alpha_L = 0.25)

Arguments

  • data: A n by p dataset matrix
  • pts: A numeric vector, which includes all candidate change points obtained from the first step
  • lambda: Tuning parameter for sparse component
  • mu: Tuning parameter for low-rank component
  • alpha_L: Constraint space for low rank component, default is 0.25

Returns

A list object, containing

  • L.n: Value of objective function
  • L.n.current: Current value of objective function
  • Maintainer: Yue Bai
  • License: GPL-2
  • Last published: 2024-06-15

Useful links