a function to apply cross-validation to select tuning parameter by minimizing SSE
cv.tuning.selection(data, lambda.seq, mu.seq, alpha_L = 0.25, nfold = 5)
data
: a n by p dataset matrixlambda.seq
: a numeric vector, indicates the sequence of tuning parameters of sparse componentsmu.seq
: a numeric vector, the sequence of tuning parameters of low rank componentsalpha_L
: a positive numeric value, indicating the constraint space of low rank componentsnfold
: a positive integer, the number of folds for cva list of object, including
Useful links