VARshrink0.3.1 package

Shrinkage Estimation Methods for Vector Autoregressive Models

Acoef_sh

Coefficient matrices of endogenous variables

arch.test_sh

ARCH-LM test

Bcoef_sh

Coefficient matrix

BQ_sh

BQ function for class "varshrinkest"

calcSSE_Acoef

Sum of squared errors (SSE) between coefficients of two VARs

causality_sh

Causality Analysis for class "varshrinkest"

convPsi2varresult

Convert format for VAR coefficients from Psi to varresult

createVARCoefs_ltriangular

Create coefficients of a VAR model

fevd.varshrinkest

Forecast Error Variance Decomposition

irf.varshrinkest

Impulse response function

lm_full_Bayes_SR

Full Bayesian Shrinkage Estimation Method for Multivariate Regression

lm_multiv_ridge

Multivariate Ridge Regression

lm_semi_Bayes_PCV

Semiparametric Bayesian Shrinkage Estimation Method for Multivariate R...

lm_ShVAR_KCV

K-fold Cross Validation for Selection of Shrinkage Parameters of Semip...

logLik.varshrinkest

Log-likelihood method for class "varshrinkest"

normality.test_sh

Normality, multivariate skewness and kurtosis test

Phi.varshrinkest

Coefficient matrices of the MA represention

predict.varshrinkest

Predict method for objects of class varshrinkest

print.varshrinkest

Print method for class "varshrinkest"

print.varshsum

Print method for class "varshsum"

restrict_sh

Restricted VAR

roots_sh

Eigenvalues of the companion coefficient matrix of a VAR(p)-process

serial.test_sh

Test for serially correlated errors for VAR shrinkage estimate

shrinkVARcoef

Semiparametric Bayesian Shrinkage Estimator for Multivariate Regressio...

simVARmodel

Generate multivariate time series data using the given VAR model

stability_sh

Stability function

summary.shrinklm

Summary method for class "shrinklm"

summary.varshrinkest

Summary method for an object of class 'varshrinkest', VAR parameters e...

VARshrink

Shrinkage estimation of VAR parameters

Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) <doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) <doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) <doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) <doi:10.1198/073500104000000622>.

  • Maintainer: Namgil Lee
  • License: GPL-3
  • Last published: 2019-10-09