Function determines appropriate contrast matrix for computing the LS Means of each factor level of one or multiple fixed effects variables.
lsmMat(obj, var =NULL, quiet =FALSE)
Arguments
obj: (VCA) object
var: (character) string specifyig the fixed effects variable for which the LS Means generating matrices should be computed
quiet: (logical) TRUE = will suppress any warning, which will be issued otherwise
Returns
(matrix) where each row corresponds to a LS Means generating contrast for each factor level of one or multiple fixed effects variable(s)
Details
This functions implements the 5 rules given in the documentation of SAS PROC GLM for computing the LS Means.#' The LS Means correspond to marginal means adjusted for bias introduced by unbalancedness.
Examples
## Not run:data(dataEP05A2_1)fit1 <- anovaMM(y~day/run, dataEP05A2_1)VCA:::lsmMat(fit1,"day")# function not exportedVCA:::lsmMat(fit1,"run")VCA:::lsmMat(fit1)# is equal to listing all fixed terms# a more complex and unbalanced modeldata(VCAdata1)datS1 <- VCAdata1[VCAdata1$sample ==1,]set.seed(42)datS1ub <- datS1[-sample(1:nrow(datS1))[1:25],]fit2 <- anovaMM(y~(lot+device)/day/(run), datS1ub)VCA:::lsmMat(fit2, c("lot","device"))## End(Not run)