Cauchy distribution
Computes the pdf, cdf, value at risk and expected shortfall for the Cauchy distribution given by [REMOVE_ME]\displaystylef(x)=π1(x−μ)2+σ2σ,\displaystyleF(x)=21+π1arctan(σx−μ),VaRp(X)=μ+σtan(π(p−21)),ESp(X)=μ+pσ∫0ptan(π(v−21))dv[REMOVEME2]
for −∞<x<∞, 0<p<1, −∞<μ<∞, the location parameter, and σ>0, the scale parameter.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Cauchy distribution given by
\displaystylef(x)=π1(x−μ)2+σ2σ,\displaystyleF(x)=21+π1arctan(σx−μ),VaRp(X)=μ+σtan(π(p−21)),ESp(X)=μ+pσ∫0ptan(π(v−21))dv
for −∞<x<∞, 0<p<1, −∞<μ<∞, the location parameter, and σ>0, the scale parameter.
dCauchy(x, mu=0, sigma=1, log=FALSE)
pCauchy(x, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varCauchy(p, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esCauchy(p, mu=0, sigma=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu
: the value of the location parameter, can take any real value, the default is zero
sigma
: the value of the scale parameter, must be positive, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dCauchy(x)
pCauchy(x)
varCauchy(x)
esCauchy(x)