Gamma function

Gamma distribution

Gamma distribution

Computes the pdf, cdf, value at risk and expected shortfall for the gamma distribution given by [REMOVE_ME]\displaystylef(x)=baxa1exp(bx)Γ(a),\displaystyleF(x)=γ(a,bx)Γ(a),VaRp(X)=1bQ1(a,1p),ESp(X)=1bp0pQ1(a,1v)dv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {b^a x^{a - 1} \exp (-b x)}{\Gamma (a)},\\&\displaystyleF (x) = \frac {\gamma (a, b x)}{\Gamma (a)},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{b} Q^{-1} (a, 1 - p),\\&\displaystyle{\rm ES}_p (X) = \frac {1}{b p} \int_0^p Q^{-1} (a, 1 - v) dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, b>0b > 0, the scale parameter, and a>0a > 0, the shape parameter, where γ(a,x)=0xta1exp(t)dt\gamma (a, x) = \int_0^x t^{a - 1} \exp \left( -t \right) dt denotes the incomplete gamma function, Q(a,x)=xta1exp(t)dt/Γ(a)Q (a, x) = \int_x^\infty t^{a - 1} \exp \left( -t \right) dt / \Gamma (a)

denotes the regularized complementary incomplete gamma function, Γ(a)=0ta1exp(t)dt\Gamma (a) = \int_0^\infty t^{a - 1} \exp \left( -t \right) dt denotes the gamma function, and Q1(a,x)Q^{-1} (a, x) denotes the inverse of Q(a,x)Q (a, x).

Description

Computes the pdf, cdf, value at risk and expected shortfall for the gamma distribution given by

\displaystylef(x)=baxa1exp(bx)Γ(a),\displaystyleF(x)=γ(a,bx)Γ(a),VaRp(X)=1bQ1(a,1p),ESp(X)=1bp0pQ1(a,1v)dv \begin{array}{ll}&\displaystylef (x) = \frac {b^a x^{a - 1} \exp (-b x)}{\Gamma (a)},\\&\displaystyleF (x) = \frac {\gamma (a, b x)}{\Gamma (a)},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{b} Q^{-1} (a, 1 - p),\\&\displaystyle{\rm ES}_p (X) = \frac {1}{b p} \int_0^p Q^{-1} (a, 1 - v) dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, b>0b > 0, the scale parameter, and a>0a > 0, the shape parameter, where γ(a,x)=0xta1exp(t)dt\gamma (a, x) = \int_0^x t^{a - 1} \exp \left( -t \right) dt denotes the incomplete gamma function, Q(a,x)=xta1exp(t)dt/Γ(a)Q (a, x) = \int_x^\infty t^{a - 1} \exp \left( -t \right) dt / \Gamma (a)

denotes the regularized complementary incomplete gamma function, Γ(a)=0ta1exp(t)dt\Gamma (a) = \int_0^\infty t^{a - 1} \exp \left( -t \right) dt denotes the gamma function, and Q1(a,x)Q^{-1} (a, x) denotes the inverse of Q(a,x)Q (a, x).

dGamma(x, a=1, b=1, log=FALSE) pGamma(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE) varGamma(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE) esGamma(p, a=1, b=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • b: the value of the scale parameter, must be positive, the default is 1
  • a: the value of the shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dGamma(x) pGamma(x) varGamma(x) esGamma(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links