HBlaplace function

Holla-Bhattacharya Laplace distribution

Holla-Bhattacharya Laplace distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Holla-Bhattacharya Laplace distribution due to Holla and Bhattacharya (1968) given by [REMOVE_ME] \begin{array}{ll}&f (x) = \left\{ \begin{array}{ll}\displaystylea \phi \exp \left\{ \phi \left( x - \theta \right) \right\}, & \mbox{if $x \leq \theta$,}\\\\\displaystyle\left( 1 - a \right) \phi \exp \left\{ \phi \left( \theta - x \right) \right\}, & \mbox{if $x > \theta$,}\end{array}\right.\\&F (x) = \left\{\begin{array}{ll}\displaystylea \exp \left( \phi x - \theta \phi \right), & \mbox{if $x \leq \theta$,}\\\\\displaystyle1 - (1 - a) \exp \left( \theta \phi - \phi x \right), & \mbox{if $x > \theta$,}\end{array}\right.\\&{\rm VaR}_p (X) =\left\{\begin{array}{ll}\displaystyle\theta + \frac {1}{\phi} \log \left( \frac {p}{a} \right), &\mbox{if $p \leq a$,}\\\\\displaystyle\theta - \frac {1}{\phi} \log \left( \frac {1 - p}{1 - a} \right), &\mbox{if $p > a$,}\end{array}\right.\\&{\rm ES}_p (X) =\left\{\begin{array}{ll}\displaystyle\theta - \frac {1}{\phi} + \frac {1}{\phi} \log \frac {p}{a}, & \mbox{if $p \leq a$,}\\\\\displaystyle\frac {1}{p} \left[ \theta (1 + p - a) + \frac {p - 2a - (1 - a) \log a}{\phi} +\frac {1 - p}{\phi} \log \frac {1 - p}{1 - a} \right], & \mbox{if $p > a$}\end{array}\right.\end{array} [REMOVE_ME_2]

for <x<-\infty < x < \infty, 0<p<10 < p < 1, <θ<-\infty < \theta < \infty, the location parameter, 0<a<10 < a < 1, the first scale parameter, and ϕ>0\phi > 0, the second scale parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Holla-Bhattacharya Laplace distribution due to Holla and Bhattacharya (1968) given by

\begin{array}{ll}&f (x) = \left\{ \begin{array}{ll}\displaystylea \phi \exp \left\{ \phi \left( x - \theta \right) \right\}, & \mbox{if $x \leq \theta$,}\\\\\displaystyle\left( 1 - a \right) \phi \exp \left\{ \phi \left( \theta - x \right) \right\}, & \mbox{if $x > \theta$,}\end{array}\right.\\&F (x) = \left\{\begin{array}{ll}\displaystylea \exp \left( \phi x - \theta \phi \right), & \mbox{if $x \leq \theta$,}\\\\\displaystyle1 - (1 - a) \exp \left( \theta \phi - \phi x \right), & \mbox{if $x > \theta$,}\end{array}\right.\\&{\rm VaR}_p (X) =\left\{\begin{array}{ll}\displaystyle\theta + \frac {1}{\phi} \log \left( \frac {p}{a} \right), &\mbox{if $p \leq a$,}\\\\\displaystyle\theta - \frac {1}{\phi} \log \left( \frac {1 - p}{1 - a} \right), &\mbox{if $p > a$,}\end{array}\right.\\&{\rm ES}_p (X) =\left\{\begin{array}{ll}\displaystyle\theta - \frac {1}{\phi} + \frac {1}{\phi} \log \frac {p}{a}, & \mbox{if $p \leq a$,}\\\\\displaystyle\frac {1}{p} \left[ \theta (1 + p - a) + \frac {p - 2a - (1 - a) \log a}{\phi} +\frac {1 - p}{\phi} \log \frac {1 - p}{1 - a} \right], & \mbox{if $p > a$}\end{array}\right.\end{array}

for <x<-\infty < x < \infty, 0<p<10 < p < 1, <θ<-\infty < \theta < \infty, the location parameter, 0<a<10 < a < 1, the first scale parameter, and ϕ>0\phi > 0, the second scale parameter.

dHBlaplace(x, a=0.5, theta=0, phi=1, log=FALSE) pHBlaplace(x, a=0.5, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE) varHBlaplace(p, a=0.5, theta=0, phi=1, log.p=FALSE, lower.tail=TRUE) esHBlaplace(p, a=0.5, theta=0, phi=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • theta: the value of the location parameter, can take any real value, the default is zero
  • a: the value of the first scale parameter, must be in the unit interval, the default is 0.5
  • phi: the value of the second scale parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dHBlaplace(x) pHBlaplace(x) varHBlaplace(x) esHBlaplace(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links