Hlogis function

Hosking logistic distribution

Hosking logistic distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by [REMOVE_ME]\displaystylef(x)=(1kx)1/k1[1+(1kx)1/k]2,\displaystyleF(x)=11+(1kx)1/k,VaRp(X)=1k[1(1pp)k],ESp(X)=1k1kpBp(1k,1+k)[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {(1 - k x)^{1 / k - 1}}{\left[ 1 + (1 - k x)^{1 / k} \right]^2},\\&\displaystyleF (x) = \frac {1}{1 + (1 - k x)^{1 / k}},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{k} \left[ 1 - \left( \frac {1 - p}{p} \right)^k \right],\\&\displaystyle{\rm ES}_p (X) = \frac {1}{k} - \frac {1}{kp} B_p (1 - k, 1 + k)\end{array} [REMOVE_ME_2]

for x<1/kx < 1/k if k>0k > 0, x>1/kx > 1/k if k<0k < 0, <x<-\infty < x < \infty if k=0k = 0, and <k<-\infty < k < \infty, the shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by

\displaystylef(x)=(1kx)1/k1[1+(1kx)1/k]2,\displaystyleF(x)=11+(1kx)1/k,VaRp(X)=1k[1(1pp)k],ESp(X)=1k1kpBp(1k,1+k) \begin{array}{ll}&\displaystylef (x) = \frac {(1 - k x)^{1 / k - 1}}{\left[ 1 + (1 - k x)^{1 / k} \right]^2},\\&\displaystyleF (x) = \frac {1}{1 + (1 - k x)^{1 / k}},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{k} \left[ 1 - \left( \frac {1 - p}{p} \right)^k \right],\\&\displaystyle{\rm ES}_p (X) = \frac {1}{k} - \frac {1}{kp} B_p (1 - k, 1 + k)\end{array}

for x<1/kx < 1/k if k>0k > 0, x>1/kx > 1/k if k<0k < 0, <x<-\infty < x < \infty if k=0k = 0, and <k<-\infty < k < \infty, the shape parameter.

dHlogis(x, k=1, log=FALSE) pHlogis(x, k=1, log.p=FALSE, lower.tail=TRUE) varHlogis(p, k=1, log.p=FALSE, lower.tail=TRUE) esHlogis(p, k=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • k: the value of the shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dHlogis(x) pHlogis(x) varHlogis(x) esHlogis(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links