Hosking logistic distribution
Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by [REMOVE_ME]\displaystylef(x)=[1+(1−kx)1/k]2(1−kx)1/k−1,\displaystyleF(x)=1+(1−kx)1/k1,VaRp(X)=k1[1−(p1−p)k],ESp(X)=k1−kp1Bp(1−k,1+k)[REMOVEME2]
for x<1/k if k>0, x>1/k if k<0, −∞<x<∞ if k=0, and −∞<k<∞, the shape parameter.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by
\displaystylef(x)=[1+(1−kx)1/k]2(1−kx)1/k−1,\displaystyleF(x)=1+(1−kx)1/k1,VaRp(X)=k1[1−(p1−p)k],ESp(X)=k1−kp1Bp(1−k,1+k)
for x<1/k if k>0, x>1/k if k<0, −∞<x<∞ if k=0, and −∞<k<∞, the shape parameter.
dHlogis(x, k=1, log=FALSE)
pHlogis(x, k=1, log.p=FALSE, lower.tail=TRUE)
varHlogis(p, k=1, log.p=FALSE, lower.tail=TRUE)
esHlogis(p, k=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
k
: the value of the shape parameter, must be positive, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dHlogis(x)
pHlogis(x)
varHlogis(x)
esHlogis(x)