LNbeta function

Libby-Novick beta distribution

Libby-Novick beta distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Libby-Novick beta distribution due to Libby and Novick (1982) given by [REMOVE_ME]\displaystylef(x)=λaxa1(1x)b1B(a,b)[1(1λ)x]a+b,\displaystyleF(x)=Iλx1+(λ1)x(a,b),VaRp(X)=Ip1(a,b)λ(λ1)Ip1(a,b),ESp(X)=1p0pIv1(a,b)λ(λ1)Iv1(a,b)dv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {\lambda^a x^{a - 1} (1 - x)^{b - 1}}{B (a, b) \left[ 1 - (1 - \lambda) x \right]^{a + b}},\\&\displaystyleF (x) = I_{\frac {\lambda x}{1 + (\lambda - 1) x}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \frac {I_p^{-1} (a, b)}{\lambda - (\lambda - 1) I_p^{-1} (a, b)},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p\frac {I_v^{-1} (a, b)}{\lambda - (\lambda - 1) I_v^{-1} (a, b)} dv\end{array} [REMOVE_ME_2]

for 0<x<10 < x < 1, 0<p<10 < p < 1, λ>0\lambda > 0, the scale parameter, a>0a > 0, the first shape parameter, and b>0b > 0, the second shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Libby-Novick beta distribution due to Libby and Novick (1982) given by

\displaystylef(x)=λaxa1(1x)b1B(a,b)[1(1λ)x]a+b,\displaystyleF(x)=Iλx1+(λ1)x(a,b),VaRp(X)=Ip1(a,b)λ(λ1)Ip1(a,b),ESp(X)=1p0pIv1(a,b)λ(λ1)Iv1(a,b)dv \begin{array}{ll}&\displaystylef (x) = \frac {\lambda^a x^{a - 1} (1 - x)^{b - 1}}{B (a, b) \left[ 1 - (1 - \lambda) x \right]^{a + b}},\\&\displaystyleF (x) = I_{\frac {\lambda x}{1 + (\lambda - 1) x}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \frac {I_p^{-1} (a, b)}{\lambda - (\lambda - 1) I_p^{-1} (a, b)},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p\frac {I_v^{-1} (a, b)}{\lambda - (\lambda - 1) I_v^{-1} (a, b)} dv\end{array}

for 0<x<10 < x < 1, 0<p<10 < p < 1, λ>0\lambda > 0, the scale parameter, a>0a > 0, the first shape parameter, and b>0b > 0, the second shape parameter.

dLNbeta(x, lambda=1, a=1, b=1, log=FALSE) pLNbeta(x, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE) varLNbeta(p, lambda=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE) esLNbeta(p, lambda=1, a=1, b=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • lambda: the value of the scale parameter, must be positive, the default is 1
  • a: the value of the first shape parameter, must be positive, the default is 1
  • b: the value of the second shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dLNbeta(x) pLNbeta(x) varLNbeta(x) esLNbeta(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links