RS function

Ramberg-Schmeiser distribution

Ramberg-Schmeiser distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Ramber-Schmeiser distribution due to Ramberg and Schmeiser (1974) given by [REMOVE_ME]VaRp(X)=pb(1p)cd,ESp(X)=pbd(b+1)+(1p)c+11pd(c+1)[REMOVEME2] \begin{array}{ll}&\displaystyle{\rm VaR}_p (X) = \frac {p^b - (1 - p)^c}{d},\\&\displaystyle{\rm ES}_p (X) = \frac {p^{b}}{d (b + 1)} + \frac {(1 - p)^{c + 1} - 1}{p d (c + 1)}\end{array} [REMOVE_ME_2]

for 0<p<10 < p < 1, b>0b > 0, the first shape parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the scale parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Ramber-Schmeiser distribution due to Ramberg and Schmeiser (1974) given by

VaRp(X)=pb(1p)cd,ESp(X)=pbd(b+1)+(1p)c+11pd(c+1) \begin{array}{ll}&\displaystyle{\rm VaR}_p (X) = \frac {p^b - (1 - p)^c}{d},\\&\displaystyle{\rm ES}_p (X) = \frac {p^{b}}{d (b + 1)} + \frac {(1 - p)^{c + 1} - 1}{p d (c + 1)}\end{array}

for 0<p<10 < p < 1, b>0b > 0, the first shape parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the scale parameter.

varRS(p, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) esRS(p, b=1, c=1, d=1)

Arguments

  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • d: the value of the scale parameter, must be positive, the default is 1
  • b: the value of the first shape parameter, must be positive, the default is 1
  • c: the value of the second shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) varRS(x) esRS(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links