Asymmetric Laplace distribution
Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric Laplace distribution due to Kotz et al. (2001) given by [REMOVE_ME] \begin{array}{ll}&\displaystyle\displaystylef(x) = \left\{ \begin{array}{ll}\displaystyle\frac {\kappa \sqrt{2}}{\tau \left( 1 + \kappa^2 \right)}\exp \left( -\frac {\kappa \sqrt{2}}{\tau} \left | x - \theta \right | \right), & \mbox{if $x \geq \theta$,}\\\\\displaystyle\frac {\kappa \sqrt{2}}{\tau \left( 1 + \kappa^2 \right)}\exp \left( -\frac {\sqrt{2}}{\kappa \tau} \left | x - \theta \right | \right), & \mbox{if $x < \theta$,}\end{array}\right.\\&\displaystyleF (x) = \left\{ \begin{array}{ll}\displaystyle1 - \frac {1}{1 + \kappa^2} \exp \left( \frac {\kappa \sqrt{2} (\theta - x)}{\tau} \right), &\mbox{if $x \geq \theta$,}\\\\\displaystyle\frac {\kappa^2}{1 + \kappa^2} \exp \left( \frac {\sqrt{2} (x - \theta)}{\kappa \tau} \right), & \mbox{if $x < \theta$,}\end{array}\right.\\&\displaystyle{\rm VaR}_p (X) = \left\{ \begin{array}{ll}\displaystyle\theta - \frac {\tau}{\sqrt{2} \kappa}\log \left[ (1 - p) \left( 1 + \kappa^2 \right) \right], & \mbox{if $p \geq \frac {\kappa^2}{1 + \kappa^2}$,}\\\\\displaystyle\theta + \frac {\kappa \tau}{\sqrt{2}} \log \left[ p \left( 1 + \kappa^{-2} \right) \right], &\mbox{if $p < \frac {\kappa^2}{1 + \kappa^2}$,}\end{array}\right.\\&\displaystyle{\rm ES}_p (X) = \left\{ \begin{array}{ll}\displaystyle\frac {\theta}{p} + \theta - \frac {\tau}{\sqrt{2} \kappa} \log \left( 1 + \kappa^2 \right) +\frac {\sqrt{2} \tau \left( 1 + 2 \kappa^2 \right)}{2 \kappa \left( 1 + \kappa^2 \right) p}\log \left( 1 + \kappa^2 \right)\\\displaystyle\quad-\frac {\sqrt{2} \tau \kappa \log \kappa}{\left( 1 + \kappa^2 \right) p} -\frac {\theta \kappa^2}{\left( 1 + \kappa^2 \right) p} +\frac {\tau \left( 1 - \kappa^4 \right)}{\sqrt{2} \kappa \left( 1 + \kappa^2 \right) p}\\\displaystyle\quad-\frac {\tau (1 - p)}{\sqrt{2} \kappa p} + \frac {\tau (1 - p)}{\sqrt{2} \kappa p} \log (1 - p), &\mbox{if $p \geq \frac {\kappa^2}{1 + \kappa^2}$,}\\\\\displaystyle\theta + \frac {\kappa \tau}{\sqrt{2}}\log \left( 1 + \kappa^{-2} \right) +\frac {\kappa \tau}{\sqrt{2}} (\log p - 1), & \mbox{if $p < \frac {\kappa^2}{1 + \kappa^2}$}\end{array}\right.\end{array} [REMOVE_ME_2]
for , , , the location parameter, , the first scale parameter, and , the second scale parameter.
Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric Laplace distribution due to Kotz et al. (2001) given by
\begin{array}{ll}&\displaystyle\displaystylef(x) = \left\{ \begin{array}{ll}\displaystyle\frac {\kappa \sqrt{2}}{\tau \left( 1 + \kappa^2 \right)}\exp \left( -\frac {\kappa \sqrt{2}}{\tau} \left | x - \theta \right | \right), & \mbox{if $x \geq \theta$,}\\\\\displaystyle\frac {\kappa \sqrt{2}}{\tau \left( 1 + \kappa^2 \right)}\exp \left( -\frac {\sqrt{2}}{\kappa \tau} \left | x - \theta \right | \right), & \mbox{if $x < \theta$,}\end{array}\right.\\&\displaystyleF (x) = \left\{ \begin{array}{ll}\displaystyle1 - \frac {1}{1 + \kappa^2} \exp \left( \frac {\kappa \sqrt{2} (\theta - x)}{\tau} \right), &\mbox{if $x \geq \theta$,}\\\\\displaystyle\frac {\kappa^2}{1 + \kappa^2} \exp \left( \frac {\sqrt{2} (x - \theta)}{\kappa \tau} \right), & \mbox{if $x < \theta$,}\end{array}\right.\\&\displaystyle{\rm VaR}_p (X) = \left\{ \begin{array}{ll}\displaystyle\theta - \frac {\tau}{\sqrt{2} \kappa}\log \left[ (1 - p) \left( 1 + \kappa^2 \right) \right], & \mbox{if $p \geq \frac {\kappa^2}{1 + \kappa^2}$,}\\\\\displaystyle\theta + \frac {\kappa \tau}{\sqrt{2}} \log \left[ p \left( 1 + \kappa^{-2} \right) \right], &\mbox{if $p < \frac {\kappa^2}{1 + \kappa^2}$,}\end{array}\right.\\&\displaystyle{\rm ES}_p (X) = \left\{ \begin{array}{ll}\displaystyle\frac {\theta}{p} + \theta - \frac {\tau}{\sqrt{2} \kappa} \log \left( 1 + \kappa^2 \right) +\frac {\sqrt{2} \tau \left( 1 + 2 \kappa^2 \right)}{2 \kappa \left( 1 + \kappa^2 \right) p}\log \left( 1 + \kappa^2 \right)\\\displaystyle\quad-\frac {\sqrt{2} \tau \kappa \log \kappa}{\left( 1 + \kappa^2 \right) p} -\frac {\theta \kappa^2}{\left( 1 + \kappa^2 \right) p} +\frac {\tau \left( 1 - \kappa^4 \right)}{\sqrt{2} \kappa \left( 1 + \kappa^2 \right) p}\\\displaystyle\quad-\frac {\tau (1 - p)}{\sqrt{2} \kappa p} + \frac {\tau (1 - p)}{\sqrt{2} \kappa p} \log (1 - p), &\mbox{if $p \geq \frac {\kappa^2}{1 + \kappa^2}$,}\\\\\displaystyle\theta + \frac {\kappa \tau}{\sqrt{2}}\log \left( 1 + \kappa^{-2} \right) +\frac {\kappa \tau}{\sqrt{2}} (\log p - 1), & \mbox{if $p < \frac {\kappa^2}{1 + \kappa^2}$}\end{array}\right.\end{array}for , , , the location parameter, , the first scale parameter, and , the second scale parameter.
dasylaplace(x, tau=1, kappa=1, theta=0, log=FALSE) pasylaplace(x, tau=1, kappa=1, theta=0, log.p=FALSE, lower.tail=TRUE) varasylaplace(p, tau=1, kappa=1, theta=0, log.p=FALSE, lower.tail=TRUE) esasylaplace(p, tau=1, kappa=1, theta=0)
x
: scaler or vector of values at which the pdf or cdf needs to be computedp
: scaler or vector of values at which the value at risk or expected shortfall needs to be computedtheta
: the value of the location parameter, can take any real value, the default is zerokappa
: the value of the first scale parameter, must be positive, the default is 1tau
: the value of the second scale parameter, must be positive, the default is 1log
: if TRUE then log(pdf) are returnedlog.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-pAn object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Saralees Nadarajah
x=runif(10,min=0,max=1) dasylaplace(x) pasylaplace(x) varasylaplace(x) esasylaplace(x)
Useful links