beard function

Beard distribution

Beard distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Beard distribution due to Beard (1959) given by [REMOVE_ME]\displaystylef(x)=aexp(bx)[1+aρ]ρ1/b[1+aρexp(bx)]1+ρ1/b,\displaystyleF(x)=1[1+aρ]ρ1/b[1+aρexp(bx)]ρ1/b,VaRp(X)=1blog[1+aρaρ(1p)ρ1/b1aρ],ESp(X)=1pb0plog[1aρ+1+aρaρ(1v)ρ1/b]dv[REMOVEME2] \begin{array}{ll}&\displaystylef(x) = \frac {\displaystyle a \exp (b x) \left[ 1 + a \rho \right]^{\rho^{-1/b}}}{\displaystyle \left[ 1 + a \rho \exp (b x) \right]^{1 + \rho^{-1/b}}},\\&\displaystyleF (x) = 1 - \frac {\displaystyle \left[ 1 + a \rho \right]^{\rho^{-1/b}}}{\displaystyle \left[ 1 + a \rho \exp (b x) \right]^{\rho^{-1/b}}},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{b} \log \left[ \frac {1 + a \rho}{a \rho (1 - p)^{\rho^{1 / b}}} - \frac {1}{a \rho} \right],\\&\displaystyle{\rm ES}_p (X) =\frac {1}{p b} \int_0^p \log \left[ -\frac {1}{a \rho} +\frac {1 + a \rho}{a \rho (1 - v)^{\rho^{1 / b}}} \right] dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first scale parameter, b>0b > 0, the second scale parameter, and ρ>0\rho > 0, the shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Beard distribution due to Beard (1959) given by

\displaystylef(x)=aexp(bx)[1+aρ]ρ1/b[1+aρexp(bx)]1+ρ1/b,\displaystyleF(x)=1[1+aρ]ρ1/b[1+aρexp(bx)]ρ1/b,VaRp(X)=1blog[1+aρaρ(1p)ρ1/b1aρ],ESp(X)=1pb0plog[1aρ+1+aρaρ(1v)ρ1/b]dv \begin{array}{ll}&\displaystylef(x) = \frac {\displaystyle a \exp (b x) \left[ 1 + a \rho \right]^{\rho^{-1/b}}}{\displaystyle \left[ 1 + a \rho \exp (b x) \right]^{1 + \rho^{-1/b}}},\\&\displaystyleF (x) = 1 - \frac {\displaystyle \left[ 1 + a \rho \right]^{\rho^{-1/b}}}{\displaystyle \left[ 1 + a \rho \exp (b x) \right]^{\rho^{-1/b}}},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{b} \log \left[ \frac {1 + a \rho}{a \rho (1 - p)^{\rho^{1 / b}}} - \frac {1}{a \rho} \right],\\&\displaystyle{\rm ES}_p (X) =\frac {1}{p b} \int_0^p \log \left[ -\frac {1}{a \rho} +\frac {1 + a \rho}{a \rho (1 - v)^{\rho^{1 / b}}} \right] dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first scale parameter, b>0b > 0, the second scale parameter, and ρ>0\rho > 0, the shape parameter.

dbeard(x, a=1, b=1, rho=1, log=FALSE) pbeard(x, a=1, b=1, rho=1, log.p=FALSE, lower.tail=TRUE) varbeard(p, a=1, b=1, rho=1, log.p=FALSE, lower.tail=TRUE) esbeard(p, a=1, b=1, rho=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first scale parameter, must be positive, the default is 1
  • b: the value of the second scale parameter, must be positive, the default is 1
  • rho: the value of the shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dbeard(x) pbeard(x) varbeard(x) esbeard(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links