betaburr7 function

Beta Burr XII distribution

Beta Burr XII distribution

Computes the pdf, cdf, value at risk and expected shortfall for the beta Burr XII distribution given by [REMOVE_ME]\displaystylef(x)=kcxc1B(a,b)[1(1+xc)k]a1(1+xc)bk1,\displaystyleF(x)=I1(1+xc)k(a,b),VaRp(X)={[1Ip1(a,b)]1/k1}1/c,ESp(X)=1p0p{[1Iv1(a,b)]1/k1}1/cdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {k c x^{c - 1}}{B (a, b)}\left[ 1 - \left( 1 + x^c \right)^{-k} \right]^{a - 1}\left( 1 + x^c \right)^{-b k - 1},\\&\displaystyleF (x) = I_{1 - \left( 1 + x^c \right)^{-k}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \left\{ \left[ 1 - I_p^{-1} (a, b) \right]^{-1 / k} - 1 \right\}^{1/c},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left\{ \left[ 1 - I_v^{-1} (a, b) \right]^{-1 / k} - 1 \right\}^{1/c} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the second shape parameter, c>0c > 0, the third shape parameter, and k>0k > 0, the fourth shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Burr XII distribution given by

\displaystylef(x)=kcxc1B(a,b)[1(1+xc)k]a1(1+xc)bk1,\displaystyleF(x)=I1(1+xc)k(a,b),VaRp(X)={[1Ip1(a,b)]1/k1}1/c,ESp(X)=1p0p{[1Iv1(a,b)]1/k1}1/cdv \begin{array}{ll}&\displaystylef (x) = \frac {k c x^{c - 1}}{B (a, b)}\left[ 1 - \left( 1 + x^c \right)^{-k} \right]^{a - 1}\left( 1 + x^c \right)^{-b k - 1},\\&\displaystyleF (x) = I_{1 - \left( 1 + x^c \right)^{-k}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \left\{ \left[ 1 - I_p^{-1} (a, b) \right]^{-1 / k} - 1 \right\}^{1/c},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left\{ \left[ 1 - I_v^{-1} (a, b) \right]^{-1 / k} - 1 \right\}^{1/c} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the second shape parameter, c>0c > 0, the third shape parameter, and k>0k > 0, the fourth shape parameter.

dbetaburr7(x, a=1, b=1, c=1, k=1, log=FALSE) pbetaburr7(x, a=1, b=1, c=1, k=1, log.p=FALSE, lower.tail=TRUE) varbetaburr7(p, a=1, b=1, c=1, k=1, log.p=FALSE, lower.tail=TRUE) esbetaburr7(p, a=1, b=1, c=1, k=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first shape parameter, must be positive, the default is 1
  • b: the value of the second shape parameter, must be positive, the default is 1
  • c: the value of the third shape parameter, must be positive, the default is 1
  • k: the value of the fourth shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dbetaburr7(x) pbetaburr7(x) varbetaburr7(x) esbetaburr7(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links