betafrechet function

Beta Frechet distribution

Beta Frechet distribution

Computes the pdf, cdf, value at risk and expected shortfall for the beta Fr'echet distribution due to Barreto-Souza et al. (2011) given by [REMOVE_ME]\displaystylef(x)=ασαxα+1B(a,b)exp{a(σx)α}[1exp{(σx)α}]b1,\displaystyleF(x)=Iexp{(σx)α}(a,b),VaRp(X)=σ[logIp1(a,b)]1/α,ESp(X)=σp0p[logIv1(a,b)]1/αdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {\alpha \sigma^\alpha}{x^{\alpha + 1} B (a, b)}\exp \left\{ -a \left( \frac {\sigma}{x} \right)^{\alpha} \right\}\left[ 1 - \exp \left\{ -\left( \frac {\sigma}{x} \right)^{\alpha} \right\} \right]^{b - 1},\\&\displaystyleF (x) = I_{\exp \left\{ -\left( \frac {\sigma}{x} \right)^{\alpha} \right\}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \sigma \left[ -\log I_p^{-1} (a, b) \right]^{-1 / \alpha},\\&\displaystyle{\rm ES}_p (X) = \frac {\sigma}{p} \int_0^p \left[ -\log I_v^{-1} (a, b) \right]^{-1 / \alpha} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, σ>0\sigma > 0, the scale parameter, b>0b > 0, the second shape parameter, and α>0\alpha > 0, the third shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Fr'echet distribution due to Barreto-Souza et al. (2011) given by

\displaystylef(x)=ασαxα+1B(a,b)exp{a(σx)α}[1exp{(σx)α}]b1,\displaystyleF(x)=Iexp{(σx)α}(a,b),VaRp(X)=σ[logIp1(a,b)]1/α,ESp(X)=σp0p[logIv1(a,b)]1/αdv \begin{array}{ll}&\displaystylef (x) = \frac {\alpha \sigma^\alpha}{x^{\alpha + 1} B (a, b)}\exp \left\{ -a \left( \frac {\sigma}{x} \right)^{\alpha} \right\}\left[ 1 - \exp \left\{ -\left( \frac {\sigma}{x} \right)^{\alpha} \right\} \right]^{b - 1},\\&\displaystyleF (x) = I_{\exp \left\{ -\left( \frac {\sigma}{x} \right)^{\alpha} \right\}} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \sigma \left[ -\log I_p^{-1} (a, b) \right]^{-1 / \alpha},\\&\displaystyle{\rm ES}_p (X) = \frac {\sigma}{p} \int_0^p \left[ -\log I_v^{-1} (a, b) \right]^{-1 / \alpha} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, σ>0\sigma > 0, the scale parameter, b>0b > 0, the second shape parameter, and α>0\alpha > 0, the third shape parameter.

dbetafrechet(x, a=1, b=1, alpha=1, sigma=1, log=FALSE) pbetafrechet(x, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE) varbetafrechet(p, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE) esbetafrechet(p, a=1, b=1, alpha=1, sigma=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • sigma: the value of the scale parameter, must be positive, the default is 1
  • a: the value of the first shape parameter, must be positive, the default is 1
  • b: the value of the second shape parameter, must be positive, the default is 1
  • alpha: the value of the third shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dbetafrechet(x) pbetafrechet(x) varbetafrechet(x) esbetafrechet(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links