Beta Gumbel distribution
Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel distribution due to Nadarajah and Kotz (2004) given by [REMOVE_ME]\displaystylef(x)=σB(a,b)1exp(σμ−x)exp[−aexpσμ−x]{1−exp[−expσμ−x]}b−1,\displaystyleF(x)=Iexp[−expσμ−x](a,b),VaRp(X)=μ−σlog[−logIp−1(a,b)],ESp(X)=μ−pσ∫0plog[−logIv−1(a,b)]dv[REMOVEME2]
for −∞<x<∞, 0<p<1, −∞<μ<∞, the location parameter, σ>0, the scale parameter, a>0, the first shape parameter, and b>0, the second shape parameter.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel distribution due to Nadarajah and Kotz (2004) given by
\displaystylef(x)=σB(a,b)1exp(σμ−x)exp[−aexpσμ−x]{1−exp[−expσμ−x]}b−1,\displaystyleF(x)=Iexp[−expσμ−x](a,b),VaRp(X)=μ−σlog[−logIp−1(a,b)],ESp(X)=μ−pσ∫0plog[−logIv−1(a,b)]dv
for −∞<x<∞, 0<p<1, −∞<μ<∞, the location parameter, σ>0, the scale parameter, a>0, the first shape parameter, and b>0, the second shape parameter.
dbetagumbel(x, a=1, b=1, mu=0, sigma=1, log=FALSE)
pbetagumbel(x, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetagumbel(p, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetagumbel(p, a=1, b=1, mu=0, sigma=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
mu
: the value of the location parameter, can take any real value, the default is zero
sigma
: the value of the scale parameter, must be positive, the default is 1
a
: the value of the first shape parameter, must be positive, the default is 1
b
: the value of the second shape parameter, must be positive, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dbetagumbel(x)
pbetagumbel(x)
varbetagumbel(x)
esbetagumbel(x)