betagumbel2 function

Beta Gumbel 2 distribution

Beta Gumbel 2 distribution

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel II distribution given by [REMOVE_ME]\displaystylef(x)=abxa1B(c,d)exp(bdxa)[1exp(bxa)]c1,\displaystyleF(x)=I1exp(bxa)(c,d),VaRp(X)=b1/a{log[1Ip1(c,d)]}1/a,ESp(X)=b1/ap0p{log[1Iv1(c,d)]}1/adv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {a b x^{-a - 1}}{B (c, d)} \exp \left( -b d x^{-a} \right) \left[ 1 - \exp \left( -b x^{-a} \right) \right]^{c - 1},\\&\displaystyleF (x) = I_{1 - \exp \left( -b x^{-a} \right)} (c, d),\\&\displaystyle{\rm VaR}_p (X) = b^{1 / a} \left\{ -\log \left[ 1 - I_p^{-1} (c, d) \right] \right\}^{-1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {b^{1 / a}}{p} \int_0^p \left\{ -\log \left[ 1 - I_v^{-1} (c, d) \right] \right\}^{-1 / a} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the scale parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the third shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel II distribution given by

\displaystylef(x)=abxa1B(c,d)exp(bdxa)[1exp(bxa)]c1,\displaystyleF(x)=I1exp(bxa)(c,d),VaRp(X)=b1/a{log[1Ip1(c,d)]}1/a,ESp(X)=b1/ap0p{log[1Iv1(c,d)]}1/adv \begin{array}{ll}&\displaystylef (x) = \frac {a b x^{-a - 1}}{B (c, d)} \exp \left( -b d x^{-a} \right) \left[ 1 - \exp \left( -b x^{-a} \right) \right]^{c - 1},\\&\displaystyleF (x) = I_{1 - \exp \left( -b x^{-a} \right)} (c, d),\\&\displaystyle{\rm VaR}_p (X) = b^{1 / a} \left\{ -\log \left[ 1 - I_p^{-1} (c, d) \right] \right\}^{-1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {b^{1 / a}}{p} \int_0^p \left\{ -\log \left[ 1 - I_v^{-1} (c, d) \right] \right\}^{-1 / a} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the scale parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the third shape parameter.

dbetagumbel2(x, a=1, b=1, c=1, d=1, log=FALSE) pbetagumbel2(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) varbetagumbel2(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) esbetagumbel2(p, a=1, b=1, c=1, d=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • b: the value of the scale parameter, must be positive, the default is 1
  • a: the value of the first shape parameter, must be positive, the default is 1
  • c: the value of the second shape parameter, must be positive, the default is 1
  • d: the value of the third shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dbetagumbel2(x) pbetagumbel2(x) varbetagumbel2(x) esbetagumbel2(x, a = 2)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links