dagum function

Dagum distribution

Dagum distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Dagum distribution due to Dagum (1975, 1977, 1980) given by [REMOVE_ME]\displaystylef(x)=acbaxac1[xa+ba]c+1,\displaystyleF(x)=[1+(bx)a]c,VaRp(X)=b(1p1/c)1/a,ESp(X)=bp0p(1v1/c)1/adv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {a c b^a x^{a c - 1}}{\left[ x^a + b^a \right]^{c + 1}},\\&\displaystyleF (x) = \left[ 1 + \left( \frac {b}{x} \right)^a \right]^{-c},\\&\displaystyle{\rm VaR}_p (X) = b \left( 1- p^{-1 / c} \right)^{-1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {b}{p} \int_0^p \left( 1 - v^{-1 / c} \right)^{-1 / a} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the scale parameter, and c>0c > 0, the second shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Dagum distribution due to Dagum (1975, 1977, 1980) given by

\displaystylef(x)=acbaxac1[xa+ba]c+1,\displaystyleF(x)=[1+(bx)a]c,VaRp(X)=b(1p1/c)1/a,ESp(X)=bp0p(1v1/c)1/adv \begin{array}{ll}&\displaystylef (x) = \frac {a c b^a x^{a c - 1}}{\left[ x^a + b^a \right]^{c + 1}},\\&\displaystyleF (x) = \left[ 1 + \left( \frac {b}{x} \right)^a \right]^{-c},\\&\displaystyle{\rm VaR}_p (X) = b \left( 1- p^{-1 / c} \right)^{-1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {b}{p} \int_0^p \left( 1 - v^{-1 / c} \right)^{-1 / a} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the scale parameter, and c>0c > 0, the second shape parameter.

ddagum(x, a=1, b=1, c=1, log=FALSE) pdagum(x, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE) vardagum(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE) esdagum(p, a=1, b=1, c=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • b: the value of the scale parameter, must be positive, the default is 1
  • a: the value of the first shape parameter, must be positive, the default is 1
  • c: the value of the second shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) ddagum(x) pdagum(x) vardagum(x) esdagum(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links