exponential function

Exponential distribution

Exponential distribution

Computes the pdf, cdf, value at risk and expected shortfall for the exponential distribution given by [REMOVE_ME]\displaystylef(x)=λexp(λx),\displaystyleF(x)=1exp(λx),VaRp(X)=1λlog(1p),ESp(X)=1pλ{log(1p)pplog(1p)}[REMOVEME2] \begin{array}{ll}&\displaystylef(x) = \lambda \exp (-\lambda x),\\&\displaystyleF (x) = 1 - \exp (-\lambda x),\\&\displaystyle{\rm VaR}_p (X) = -\frac {1}{\lambda} \log (1 - p),\\&\displaystyle{\rm ES}_p (X) = -\frac {1}{p \lambda} \left\{ \log (1 - p) p - p - \log (1 - p) \right\}\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, and λ>0\lambda > 0, the scale parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the exponential distribution given by

\displaystylef(x)=λexp(λx),\displaystyleF(x)=1exp(λx),VaRp(X)=1λlog(1p),ESp(X)=1pλ{log(1p)pplog(1p)} \begin{array}{ll}&\displaystylef(x) = \lambda \exp (-\lambda x),\\&\displaystyleF (x) = 1 - \exp (-\lambda x),\\&\displaystyle{\rm VaR}_p (X) = -\frac {1}{\lambda} \log (1 - p),\\&\displaystyle{\rm ES}_p (X) = -\frac {1}{p \lambda} \left\{ \log (1 - p) p - p - \log (1 - p) \right\}\end{array}

for x>0x > 0, 0<p<10 < p < 1, and λ>0\lambda > 0, the scale parameter.

dexponential(x, lambda=1, log=FALSE) pexponential(x, lambda=1, log.p=FALSE, lower.tail=TRUE) varexponential(p, lambda=1, log.p=FALSE, lower.tail=TRUE) esexponential(p, lambda=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • lambda: the value of the scale parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dexponential(x) pexponential(x) varexponential(x) esexponential(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links