Exponential power distribution
Computes the pdf, cdf, value at risk and expected shortfall for the exponential power distribution due to Subbotin (1923) given by [REMOVE_ME] \begin{array}{ll}&\displaystylef (x) = \frac {1}{\displaystyle 2 a^{1/a} \sigma \Gamma \left( 1 + 1/a \right)}\exp \left\{ -\frac {\mid x - \mu \mid^a}{a \sigma^a} \right\},\\&\displaystyleF (x) =\left\{\begin{array}{ll}\displaystyle\frac {1}{2} Q \left( \frac {1}{a}, \frac {(\mu - x)^a}{a \sigma^a} \right), & \mbox{if $x \leq \mu$,}\\\\\displaystyle1 - \frac {1}{2} Q \left( \frac {1}{a}, \frac {(x - \mu)^a}{a \sigma^a} \right), & \mbox{if $x > \mu$,}\end{array}\right.\\&\displaystyle{\rm VaR}_p (X) =\left\{\begin{array}{ll}\displaystyle\mu - a^{1/a} \sigma \left[ Q^{-1} \left( \frac {1}{a}, 2 p \right) \right]^{1/a}, & \mbox{if $p \leq 1/2$,}\\\\\mu + a^{1/a} \sigma \left[ Q^{-1} \left( \frac {1}{a}, 2 (1 - p) \right) \right]^{1/a}, & \mbox{if $p > 1/2$,}\end{array}\right.\\&\displaystyle{\rm ES}_p (X) =\left\{\begin{array}{ll}\displaystyle\mu - \frac {a^{1/a} \sigma}{p} \int_0^p \left[ Q^{-1} \left( \frac {1}{a}, 2 v \right) \right]^{1/a} dv, & \mbox{if $p \leq 1/2$,}\\\\\displaystyle\mu - \frac {a^{1/a} \sigma}{p} \int_0^{1/2} \left[ Q^{-1} \left( \frac {1}{a}, 2 v \right) \right]^{1/a} dv\\\displaystyle\quad+\frac {a^{1/a} \sigma}{p} \int_{1/2}^p \left[ Q^{-1} \left( \frac {1}{a}, 2 (1 - v) \right) \right]^{1/a} dv, & \mbox{if $p > 1/2$}\end{array}\right.\end{array} [REMOVE_ME_2]
for , , , the location parameter, , the scale parameter, and , the shape parameter.
Computes the pdf, cdf, value at risk and expected shortfall for the exponential power distribution due to Subbotin (1923) given by
\begin{array}{ll}&\displaystylef (x) = \frac {1}{\displaystyle 2 a^{1/a} \sigma \Gamma \left( 1 + 1/a \right)}\exp \left\{ -\frac {\mid x - \mu \mid^a}{a \sigma^a} \right\},\\&\displaystyleF (x) =\left\{\begin{array}{ll}\displaystyle\frac {1}{2} Q \left( \frac {1}{a}, \frac {(\mu - x)^a}{a \sigma^a} \right), & \mbox{if $x \leq \mu$,}\\\\\displaystyle1 - \frac {1}{2} Q \left( \frac {1}{a}, \frac {(x - \mu)^a}{a \sigma^a} \right), & \mbox{if $x > \mu$,}\end{array}\right.\\&\displaystyle{\rm VaR}_p (X) =\left\{\begin{array}{ll}\displaystyle\mu - a^{1/a} \sigma \left[ Q^{-1} \left( \frac {1}{a}, 2 p \right) \right]^{1/a}, & \mbox{if $p \leq 1/2$,}\\\\\mu + a^{1/a} \sigma \left[ Q^{-1} \left( \frac {1}{a}, 2 (1 - p) \right) \right]^{1/a}, & \mbox{if $p > 1/2$,}\end{array}\right.\\&\displaystyle{\rm ES}_p (X) =\left\{\begin{array}{ll}\displaystyle\mu - \frac {a^{1/a} \sigma}{p} \int_0^p \left[ Q^{-1} \left( \frac {1}{a}, 2 v \right) \right]^{1/a} dv, & \mbox{if $p \leq 1/2$,}\\\\\displaystyle\mu - \frac {a^{1/a} \sigma}{p} \int_0^{1/2} \left[ Q^{-1} \left( \frac {1}{a}, 2 v \right) \right]^{1/a} dv\\\displaystyle\quad+\frac {a^{1/a} \sigma}{p} \int_{1/2}^p \left[ Q^{-1} \left( \frac {1}{a}, 2 (1 - v) \right) \right]^{1/a} dv, & \mbox{if $p > 1/2$}\end{array}\right.\end{array}for , , , the location parameter, , the scale parameter, and , the shape parameter.
dexppower(x, mu=0, sigma=1, a=1, log=FALSE) pexppower(x, mu=0, sigma=1, a=1, log.p=FALSE, lower.tail=TRUE) varexppower(p, mu=0, sigma=1, a=1, log.p=FALSE, lower.tail=TRUE) esexppower(p, mu=0, sigma=1, a=1)
x
: scaler or vector of values at which the pdf or cdf needs to be computedp
: scaler or vector of values at which the value at risk or expected shortfall needs to be computedmu
: the value of the location parameter, can take any real value, the default is zerosigma
: the value of the scale parameter, must be positive, the default is 1a
: the value of the shape parameter, must be positive, the default is 1log
: if TRUE then log(pdf) are returnedlog.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-pAn object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Saralees Nadarajah
x=runif(10,min=0,max=1) dexppower(x) pexppower(x) varexppower(x) esexppower(x)
Useful links