genbeta2 function

Generalized beta II distribution

Generalized beta II distribution

Computes the pdf, cdf, value at risk and expected shortfall for the generalized beta II distribution given by [REMOVE_ME]\displaystylef(x)=cxac1(1xc)b1B(a,b),\displaystyleF(x)=Ixc(a,b),VaRp(X)=[Ip1(a,b)]1/c,ESp(X)=1p0p[Iv1(a,b)]1/cdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {c x^{ac - 1} \left( 1 - x^c \right)^{b - 1}}{B (a, b)},\\&\displaystyleF (x) = I_{x^c} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \left[ I_p^{-1} (a, b) \right]^{1 / c},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ I_v^{-1} (a, b) \right]^{1 / c} dv\end{array} [REMOVE_ME_2]

for 0<x<10 < x < 1, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the second shape parameter, and c>0c > 0, the third shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized beta II distribution given by

\displaystylef(x)=cxac1(1xc)b1B(a,b),\displaystyleF(x)=Ixc(a,b),VaRp(X)=[Ip1(a,b)]1/c,ESp(X)=1p0p[Iv1(a,b)]1/cdv \begin{array}{ll}&\displaystylef (x) = \frac {c x^{ac - 1} \left( 1 - x^c \right)^{b - 1}}{B (a, b)},\\&\displaystyleF (x) = I_{x^c} (a, b),\\&\displaystyle{\rm VaR}_p (X) = \left[ I_p^{-1} (a, b) \right]^{1 / c},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ I_v^{-1} (a, b) \right]^{1 / c} dv\end{array}

for 0<x<10 < x < 1, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, b>0b > 0, the second shape parameter, and c>0c > 0, the third shape parameter.

dgenbeta2(x, a=1, b=1, c=1, log=FALSE) pgenbeta2(x, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE) vargenbeta2(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE) esgenbeta2(p, a=1, b=1, c=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first shape parameter, must be positive, the default is 1
  • b: the value of the second shape parameter, must be positive, the default is 1
  • c: the value of the third shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dgenbeta2(x) pgenbeta2(x) vargenbeta2(x) esgenbeta2(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links