geninvbeta function

Generalized inverse beta distribution

Generalized inverse beta distribution

Computes the pdf, cdf, value at risk and expected shortfall for the generalized inverse beta distribution given by [REMOVE_ME]\displaystylef(x)=axac1B(c,d)(1+xa)c+d,\displaystyleF(x)=Ixa1+xa(c,d),VaRp(X)=[Ip1(c,d)1Ip1(c,d)]1/a,ESp(X)=1p0p[Iv1(c,d)1Iv1(c,d)]1/adv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {a x^{ac - 1}}{B (c, d) \left( 1 + x^a \right)^{c + d}},\\&\displaystyleF (x) = I_{\frac {x^a}{1 + x^a}} (c, d),\\&\displaystyle{\rm VaR}_p (X) = \left[ \frac {I_p^{-1} (c, d)}{1 - I_p^{-1} (c, d)} \right]^{1/a},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ \frac {I_v^{-1} (c, d)}{1 - I_v^{-1} (c, d)} \right]^{1/a} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the third shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized inverse beta distribution given by

\displaystylef(x)=axac1B(c,d)(1+xa)c+d,\displaystyleF(x)=Ixa1+xa(c,d),VaRp(X)=[Ip1(c,d)1Ip1(c,d)]1/a,ESp(X)=1p0p[Iv1(c,d)1Iv1(c,d)]1/adv \begin{array}{ll}&\displaystylef (x) = \frac {a x^{ac - 1}}{B (c, d) \left( 1 + x^a \right)^{c + d}},\\&\displaystyleF (x) = I_{\frac {x^a}{1 + x^a}} (c, d),\\&\displaystyle{\rm VaR}_p (X) = \left[ \frac {I_p^{-1} (c, d)}{1 - I_p^{-1} (c, d)} \right]^{1/a},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ \frac {I_v^{-1} (c, d)}{1 - I_v^{-1} (c, d)} \right]^{1/a} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, c>0c > 0, the second shape parameter, and d>0d > 0, the third shape parameter.

dgeninvbeta(x, a=1, c=1, d=1, log=FALSE) pgeninvbeta(x, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) vargeninvbeta(p, a=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE) esgeninvbeta(p, a=1, c=1, d=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first shape parameter, must be positive, the default is 1
  • c: the value of the second shape parameter, must be positive, the default is 1
  • d: the value of the second shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dgeninvbeta(x) pgeninvbeta(x) vargeninvbeta(x) esgeninvbeta(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links