genpareto function

Generalized Pareto distribution

Generalized Pareto distribution

Computes the pdf, cdf, value at risk and expected shortfall for the generalized Pareto distribution due to Pickands (1975) given by [REMOVE_ME]\displaystylef(x)=1k(1cxk)1/c1,\displaystyleF(x)=1(1cxk)1/c,VaRp(X)=kc[1(1p)c],ESp(X)=kc+k(1p)c+1pc(c+1)kpc(c+1)[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {1}{k} \left( 1 - \frac {c x}{k} \right)^{1 / c - 1},\\&\displaystyleF (x) = 1 - \left( 1 - \frac {c x}{k} \right)^{1 / c},\\&\displaystyle{\rm VaR}_p (X) = \frac {k}{c} \left[ 1 - (1 - p)^c \right],\\&\displaystyle{\rm ES}_p (X) = \frac {k}{c} + \frac {k (1 - p)^{c + 1}}{p c (c + 1)} - \frac {k}{p c (c + 1)}\end{array} [REMOVE_ME_2]

for x<k/cx < k/c if c>0c > 0, x>k/cx > k/c if c<0c < 0, x>0x > 0 if c=0c = 0, 0<p<10 < p < 1, k>0k > 0, the scale parameter and <c<-\infty < c < \infty, the shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized Pareto distribution due to Pickands (1975) given by

\displaystylef(x)=1k(1cxk)1/c1,\displaystyleF(x)=1(1cxk)1/c,VaRp(X)=kc[1(1p)c],ESp(X)=kc+k(1p)c+1pc(c+1)kpc(c+1) \begin{array}{ll}&\displaystylef (x) = \frac {1}{k} \left( 1 - \frac {c x}{k} \right)^{1 / c - 1},\\&\displaystyleF (x) = 1 - \left( 1 - \frac {c x}{k} \right)^{1 / c},\\&\displaystyle{\rm VaR}_p (X) = \frac {k}{c} \left[ 1 - (1 - p)^c \right],\\&\displaystyle{\rm ES}_p (X) = \frac {k}{c} + \frac {k (1 - p)^{c + 1}}{p c (c + 1)} - \frac {k}{p c (c + 1)}\end{array}

for x<k/cx < k/c if c>0c > 0, x>k/cx > k/c if c<0c < 0, x>0x > 0 if c=0c = 0, 0<p<10 < p < 1, k>0k > 0, the scale parameter and <c<-\infty < c < \infty, the shape parameter.

dgenpareto(x, k=1, c=1, log=FALSE) pgenpareto(x, k=1, c=1, log.p=FALSE, lower.tail=TRUE) vargenpareto(p, k=1, c=1, log.p=FALSE, lower.tail=TRUE) esgenpareto(p, k=1, c=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • k: the value of the scale parameter, must be positive, the default is 1
  • c: the value of the shape parameter, can take any real value, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dgenpareto(x) pgenpareto(x) vargenpareto(x) esgenpareto(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links