genunif function

Generalized uniform distribution

Generalized uniform distribution

Computes the pdf, cdf, value at risk and expected shortfall for the generalized uniform distribution given by [REMOVE_ME]\displaystylef(x)=hkc(xa)c1[1k(xa)c]h1,\displaystyleF(x)=1[1k(xa)c]h,VaRp(X)=a+k1/c[1(1p)1/h]1/c,ESp(X)=a+k1/cp0p[1(1v)1/h]1/cdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = h k c (x - a)^{c - 1} \left[ 1 - k (x - a)^c \right]^{h - 1},\\&\displaystyleF (x) = 1 - \left[ 1 - k (x - a)^c \right]^h,\\&\displaystyle{\rm VaR}_p (X) = a + k^{-1/c} \left[ 1 - (1 - p)^{1/h} \right]^{1/c},\\&\displaystyle{\rm ES}_p (X) = a + \frac {k^{-1/c}}{p} \int_0^p \left[ 1 - (1 - v)^{1/h} \right]^{1/c} dv\end{array} [REMOVE_ME_2]

for axa+k1/ca \leq x \leq a + k^{-1/c}, 0<p<10 < p < 1, <a<-\infty < a < \infty, the location parameter, c>0c > 0, the first shape parameter, k>0k > 0, the scale parameter, and h>0h > 0, the second shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the generalized uniform distribution given by

\displaystylef(x)=hkc(xa)c1[1k(xa)c]h1,\displaystyleF(x)=1[1k(xa)c]h,VaRp(X)=a+k1/c[1(1p)1/h]1/c,ESp(X)=a+k1/cp0p[1(1v)1/h]1/cdv \begin{array}{ll}&\displaystylef (x) = h k c (x - a)^{c - 1} \left[ 1 - k (x - a)^c \right]^{h - 1},\\&\displaystyleF (x) = 1 - \left[ 1 - k (x - a)^c \right]^h,\\&\displaystyle{\rm VaR}_p (X) = a + k^{-1/c} \left[ 1 - (1 - p)^{1/h} \right]^{1/c},\\&\displaystyle{\rm ES}_p (X) = a + \frac {k^{-1/c}}{p} \int_0^p \left[ 1 - (1 - v)^{1/h} \right]^{1/c} dv\end{array}

for axa+k1/ca \leq x \leq a + k^{-1/c}, 0<p<10 < p < 1, <a<-\infty < a < \infty, the location parameter, c>0c > 0, the first shape parameter, k>0k > 0, the scale parameter, and h>0h > 0, the second shape parameter.

dgenunif(x, a=0, c=1, h=1, k=1, log=FALSE) pgenunif(x, a=0, c=1, h=1, k=1, log.p=FALSE, lower.tail=TRUE) vargenunif(p, a=0, c=1, h=1, k=1, log.p=FALSE, lower.tail=TRUE) esgenunif(p, a=0, c=1, h=1, k=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the location parameter, can take any real value, the default is zero
  • k: the value of the scale parameter, must be positive, the default is 1
  • c: the value of the first scale parameter, must be positive, the default is 1
  • h: the value of the second scale parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dgenunif(x) pgenunif(x) vargenunif(x) esgenunif(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links