halflogis function

Half logistic distribution

Half logistic distribution

Computes the pdf, cdf, value at risk and expected shortfall for the half logistic distribution given by [REMOVE_ME]\displaystylef(x)=2λexp(λx)[1+exp(λx)]2,\displaystyleF(x)=1exp(λx)1+exp(λx),VaRp(X)=1λlog1p1+p,ESp(X)=1λlog1p1+p+1λplog(1p2)[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {2 \lambda \exp \left( -\lambda x \right)}{\left[ 1 + \exp \left( -\lambda x \right) \right]^2},\\&\displaystyleF (x) = \frac {1 - \exp \left( -\lambda x \right)}{1 + \exp \left( -\lambda x \right)},\\&\displaystyle{\rm VaR}_p (X) = -\frac {1}{\lambda} \log \frac {1 - p}{1 + p},\\&\displaystyle{\rm ES}_p (X) = -\frac {1}{\lambda} \log \frac {1 - p}{1 + p} + \frac {1}{\lambda p} \log \left( 1 - p^2 \right)\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, and λ>0\lambda > 0, the scale parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the half logistic distribution given by

\displaystylef(x)=2λexp(λx)[1+exp(λx)]2,\displaystyleF(x)=1exp(λx)1+exp(λx),VaRp(X)=1λlog1p1+p,ESp(X)=1λlog1p1+p+1λplog(1p2) \begin{array}{ll}&\displaystylef (x) = \frac {2 \lambda \exp \left( -\lambda x \right)}{\left[ 1 + \exp \left( -\lambda x \right) \right]^2},\\&\displaystyleF (x) = \frac {1 - \exp \left( -\lambda x \right)}{1 + \exp \left( -\lambda x \right)},\\&\displaystyle{\rm VaR}_p (X) = -\frac {1}{\lambda} \log \frac {1 - p}{1 + p},\\&\displaystyle{\rm ES}_p (X) = -\frac {1}{\lambda} \log \frac {1 - p}{1 + p} + \frac {1}{\lambda p} \log \left( 1 - p^2 \right)\end{array}

for x>0x > 0, 0<p<10 < p < 1, and λ>0\lambda > 0, the scale parameter.

dhalflogis(x, lambda=1, log=FALSE) phalflogis(x, lambda=1, log.p=FALSE, lower.tail=TRUE) varhalflogis(p, lambda=1, log.p=FALSE, lower.tail=TRUE) eshalflogis(p, lambda=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • lambda: the value of the scale parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dhalflogis(x) phalflogis(x) varhalflogis(x) eshalflogis(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links