kum function

Kumaraswamy distribution

Kumaraswamy distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy distribution due to Kumaraswamy (1980) given by [REMOVE_ME]\displaystylef(x)=abxa1(1xa)b1,\displaystyleF(x)=1(1xa)b,VaRp(X)=[1(1p)1/b]1/a,ESp(X)=1p0p[1(1v)1/b]1/adv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = a b x^{a - 1} \left( 1 - x^a \right)^{b - 1},\\&\displaystyleF (x) = 1 - \left( 1 - x^a \right)^b,\\&\displaystyle{\rm VaR}_p (X) =\left[ 1 - (1 - p)^{1 / b} \right]^{1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ 1 - (1 - v)^{1 / b} \right]^{1 / a} dv\end{array} [REMOVE_ME_2]

for 0<x<10 < x < 1, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, and b>0b > 0, the second shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy distribution due to Kumaraswamy (1980) given by

\displaystylef(x)=abxa1(1xa)b1,\displaystyleF(x)=1(1xa)b,VaRp(X)=[1(1p)1/b]1/a,ESp(X)=1p0p[1(1v)1/b]1/adv \begin{array}{ll}&\displaystylef (x) = a b x^{a - 1} \left( 1 - x^a \right)^{b - 1},\\&\displaystyleF (x) = 1 - \left( 1 - x^a \right)^b,\\&\displaystyle{\rm VaR}_p (X) =\left[ 1 - (1 - p)^{1 / b} \right]^{1 / a},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ 1 - (1 - v)^{1 / b} \right]^{1 / a} dv\end{array}

for 0<x<10 < x < 1, 0<p<10 < p < 1, a>0a > 0, the first shape parameter, and b>0b > 0, the second shape parameter.

dkum(x, a=1, b=1, log=FALSE) pkum(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE) varkum(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE) eskum(p, a=1, b=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first shape parameter, must be positive, the default is 1
  • b: the value of the second shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dkum(x) pkum(x) varkum(x) eskum(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links