kumloglogis function

Kumaraswamy log-logistic distribution

Kumaraswamy log-logistic distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy log-logistic distribution due to de Santana et al. (2012) given by [REMOVE_ME]\displaystylef(x)=abβαβxaβ1(αβ+xβ)a+1[1xaβ(αβ+xβ)a]b1,\displaystyleF(x)=[1xaβ(αβ+xβ)a]b,VaRp(X)=α{[1(1p)1/b]1/a1}1/β,ESp(X)=αp0p{[1(1v)1/b]1/a1}1/βdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {a b \beta \alpha^\beta x^{a \beta - 1}}{\left( \alpha^\beta + x^\beta \right)^{a + 1}}\left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^{b - 1},\\&\displaystyleF (x) = \left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^b,\\&\displaystyle{\rm VaR}_p (X) = \alpha \left\{ \left[ 1 - (1 - p)^{1 / b} \right]^{1 / a} - 1 \right\}^{-1 / \beta},\\&\displaystyle{\rm ES}_p (X) = \frac {\alpha}{p} \int_0^p \left\{ \left[ 1 - (1 - v)^{1 / b}\right]^{1 / a} - 1 \right\}^{-1 / \beta} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, α>0\alpha > 0, the scale parameter, β>0\beta > 0, the first shape parameter, a>0a > 0, the second shape parameter, and b>0b > 0, the third shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy log-logistic distribution due to de Santana et al. (2012) given by

\displaystylef(x)=abβαβxaβ1(αβ+xβ)a+1[1xaβ(αβ+xβ)a]b1,\displaystyleF(x)=[1xaβ(αβ+xβ)a]b,VaRp(X)=α{[1(1p)1/b]1/a1}1/β,ESp(X)=αp0p{[1(1v)1/b]1/a1}1/βdv \begin{array}{ll}&\displaystylef (x) = \frac {a b \beta \alpha^\beta x^{a \beta - 1}}{\left( \alpha^\beta + x^\beta \right)^{a + 1}}\left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^{b - 1},\\&\displaystyleF (x) = \left[ 1 - \frac {x^{a \beta}}{\left( \alpha^\beta + x^\beta \right)^a} \right]^b,\\&\displaystyle{\rm VaR}_p (X) = \alpha \left\{ \left[ 1 - (1 - p)^{1 / b} \right]^{1 / a} - 1 \right\}^{-1 / \beta},\\&\displaystyle{\rm ES}_p (X) = \frac {\alpha}{p} \int_0^p \left\{ \left[ 1 - (1 - v)^{1 / b}\right]^{1 / a} - 1 \right\}^{-1 / \beta} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, α>0\alpha > 0, the scale parameter, β>0\beta > 0, the first shape parameter, a>0a > 0, the second shape parameter, and b>0b > 0, the third shape parameter.

dkumloglogis(x, a=1, b=1, alpha=1, beta=1, log=FALSE) pkumloglogis(x, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE) varkumloglogis(p, a=1, b=1, alpha=1, beta=1, log.p=FALSE, lower.tail=TRUE) eskumloglogis(p, a=1, b=1, alpha=1, beta=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • alpha: the value of the scale parameter, must be positive, the default is 1
  • beta: the value of the first shape parameter, must be positive, the default is 1
  • a: the value of the second shape parameter, must be positive, the default is 1
  • b: the value of the third shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dkumloglogis(x) pkumloglogis(x) varkumloglogis(x) eskumloglogis(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links