Logistic exponential distribution
Computes the pdf, cdf, value at risk and expected shortfall for the logistic exponential distribution due to Lan and Leemis (2008) given by [REMOVE_ME]\displaystylef(x)={1+[exp(λx)−1]a}2aλexp(λx)[exp(λx)−1]a−1,\displaystyleF(x)=1+[exp(λx)−1]a[exp(λx)−1]a,VaRp(X)=λ1log[1+(1−pp)1/a],ESp(X)=pλ1∫0plog[1+(1−vv)1/a]dv[REMOVEME2]
for x>0, 0<p<1, a>0, the shape parameter and λ>0, the scale parameter.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the logistic exponential distribution due to Lan and Leemis (2008) given by
\displaystylef(x)={1+[exp(λx)−1]a}2aλexp(λx)[exp(λx)−1]a−1,\displaystyleF(x)=1+[exp(λx)−1]a[exp(λx)−1]a,VaRp(X)=λ1log[1+(1−pp)1/a],ESp(X)=pλ1∫0plog[1+(1−vv)1/a]dv
for x>0, 0<p<1, a>0, the shape parameter and λ>0, the scale parameter.
dlogisexp(x, lambda=1, a=1, log=FALSE)
plogisexp(x, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
varlogisexp(p, lambda=1, a=1, log.p=FALSE, lower.tail=TRUE)
eslogisexp(p, lambda=1, a=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
lambda
: the value of the scale parameter, must be positive, the default is 1
a
: the value of the shape parameter, must be positive, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dlogisexp(x)
plogisexp(x)
varlogisexp(x)
eslogisexp(x)