moweibull function

Marshall-Olkin Weibull distribution

Marshall-Olkin Weibull distribution

Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by [REMOVE_ME]\displaystylef(x)=bλbxb1exp[(λx)b]{exp[(λx)b]1+a}2,\displaystyleF(x)=exp[(λx)b]2+aexp[(λx)b]1+a,VaRp(X)=1λ[log(11p+1a)]1/b,ESp(X)=1λp0p[log(11v+1a)]1/bdv[REMOVEME2] \begin{array}{ll}&\displaystylef(x) = b \lambda^b x^{b - 1} \exp \left[ (\lambda x)^b \right]\left\{ \exp \left[ (\lambda x)^b \right] - 1 + a \right\}^{-2},\\&\displaystyleF(x) = \frac {\displaystyle \exp \left[ (\lambda x)^b \right] - 2 + a}{\displaystyle \exp \left[ (\lambda x)^b \right] - 1 + a},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{\lambda} \left[ \log \left( \frac {1}{1 - p} + 1 - a \right) \right]^{1 / b},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{\lambda p} \int_0^p \left[ \log \left( \frac {1}{1 - v} + 1 - a \right) \right]^{1 / b} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first scale parameter, b>0b > 0, the shape parameter, and λ>0\lambda > 0, the second scale parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by

\displaystylef(x)=bλbxb1exp[(λx)b]{exp[(λx)b]1+a}2,\displaystyleF(x)=exp[(λx)b]2+aexp[(λx)b]1+a,VaRp(X)=1λ[log(11p+1a)]1/b,ESp(X)=1λp0p[log(11v+1a)]1/bdv \begin{array}{ll}&\displaystylef(x) = b \lambda^b x^{b - 1} \exp \left[ (\lambda x)^b \right]\left\{ \exp \left[ (\lambda x)^b \right] - 1 + a \right\}^{-2},\\&\displaystyleF(x) = \frac {\displaystyle \exp \left[ (\lambda x)^b \right] - 2 + a}{\displaystyle \exp \left[ (\lambda x)^b \right] - 1 + a},\\&\displaystyle{\rm VaR}_p (X) = \frac {1}{\lambda} \left[ \log \left( \frac {1}{1 - p} + 1 - a \right) \right]^{1 / b},\\&\displaystyle{\rm ES}_p (X) = \frac {1}{\lambda p} \int_0^p \left[ \log \left( \frac {1}{1 - v} + 1 - a \right) \right]^{1 / b} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first scale parameter, b>0b > 0, the shape parameter, and λ>0\lambda > 0, the second scale parameter.

dmoweibull(x, a=1, b=1, lambda=1, log=FALSE) pmoweibull(x, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE) varmoweibull(p, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE) esmoweibull(p, a=1, b=1, lambda=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first scale parameter, must be positive, the default is 1
  • lambda: the value of the second scale parameter, must be positive, the default is 1
  • b: the value of the shape parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dmoweibull(x) pmoweibull(x) varmoweibull(x) esmoweibull(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links