Marshall-Olkin Weibull distribution
Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by [REMOVE_ME]\displaystylef(x)=bλbxb−1exp[(λx)b]{exp[(λx)b]−1+a}−2,\displaystyleF(x)=exp[(λx)b]−1+aexp[(λx)b]−2+a,VaRp(X)=λ1[log(1−p1+1−a)]1/b,ESp(X)=λp1∫0p[log(1−v1+1−a)]1/bdv[REMOVEME2]
for x>0, 0<p<1, a>0, the first scale parameter, b>0, the shape parameter, and λ>0, the second scale parameter.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by
\displaystylef(x)=bλbxb−1exp[(λx)b]{exp[(λx)b]−1+a}−2,\displaystyleF(x)=exp[(λx)b]−1+aexp[(λx)b]−2+a,VaRp(X)=λ1[log(1−p1+1−a)]1/b,ESp(X)=λp1∫0p[log(1−v1+1−a)]1/bdv
for x>0, 0<p<1, a>0, the first scale parameter, b>0, the shape parameter, and λ>0, the second scale parameter.
dmoweibull(x, a=1, b=1, lambda=1, log=FALSE)
pmoweibull(x, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varmoweibull(p, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esmoweibull(p, a=1, b=1, lambda=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a
: the value of the first scale parameter, must be positive, the default is 1
lambda
: the value of the second scale parameter, must be positive, the default is 1
b
: the value of the shape parameter, must be positive, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dmoweibull(x)
pmoweibull(x)
varmoweibull(x)
esmoweibull(x)